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Abstract

The topic of this thesis is approximation algorithms for optimization versions of
NP-complete decision problems. No exact algorithms with sub-exponential run-
ning times are known for these problems, and therefore approximation algorithms
with polynomial running times are studied. An approximation algorithm does not
necessarily �nd the optimal solution, but it leaves a guarantee of how far from the
optimum the output solution can be in the worst case. This performance guarantee
is the measure of quality of an approximation algorithm; it should be as close to 1
as possible.

We present new approximation algorithms for several di�erent maximization
problems. All problems are essentially constraint satisfaction problems: An in-
stance consists of a set of constraints on groups of variables. The objective is to
satisfy as many of the constraints as possible. Most results on such problems are
for binary variables; we give some results for binary variables and some where the
domain is Zp. A common feature of all such problems is that they can be ap-
proximated within a constant factor by picking a variable assignment uniformly at
random. Until recently, this was the best known approximation algorithm for many
constraint satisfaction problems. Algorithms based on semide�nite programming
were introduced by Goemans and Williamson in 1994, and they revolutionized the
�eld. We continue this line of research and use semide�nite programming combined
with randomized rounding schemes to obtain algorithms better than picking a so-
lution at random for several di�erent problems: Max Set Splitting, Max 3-Horn
Sat, Max E2-Lin mod p, and Max p-Section. When restricted to dense instances,
most such problems become easier to approximate. We devise a polynomial time
approximation scheme for the family Max Ek-Function Sat mod p of constraint
satisfaction problems for which the domain is Zp. We also prove lower bounds on
the approximability of Max k-Horn Sat and Max E2-Lin mod p. A lower bound in
this context is a proof that it is impossible to approximate a problem within some
given performance guarantee unless P = NP.

Keywords: computational complexity, NP optimization problems, approxima-
tion algorithms, performance guarantee, constraint satisfaction problems, semidef-
inite programming, randomized rounding, lower bounds, polynomial time approxi-
mation schemes.
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Sammanfattning

Ämnet för den här avhandlingen är approximationsalgoritmer för formuleringar
av NP-fullständiga beslutsproblem som optimeringsproblem. Inga algoritmer med
exekveringstid bättre än exponentiell i indatas storlek är kända för dessa problem,
och därför studerar man approximationsalgoritmer med polynomisk körtid. En ap-
proximationsalgoritm hittar inte nödvändigtvis den bästa lösningen, men den ger
en garanti att den lösning den hittar inte är längre från den bästa lösningen än en
viss gräns. Denna approximationsfaktor är måttet på hur bra en approximationsal-
goritm är; ju närmare 1 den är, desto bättre.

Vi presenterar nya approximationsalgoritmer för olika maximeringsproblem. Al-
la problem vi studerar är väsentligen villkorsproblem av följande typ: Indata består
av en variabelmängd och en uppsättning villkor över dessa variabler. Målet är att
hitta en tilldelning till variablerna så att så många villkor som möjligt uppfylls.
De �esta kända resultat för villkorsproblem är för binära variabler; vi ger några
resultat för binära variabler och några för variabler i Zp. En gemensam egenskap
hos alla sådana problem är att de kan approximeras inom en konstant faktor genom
att välja variablernas värde slumpvis oberoende av varandra. Ända tills nyligen var
detta den bästa kända approximationsalgoritmen för många villkorsproblem. 1994
presenterade Goemans och Williamson algoritmer baserade på semide�nit program-
mering för några sådana problem, och detta arbete innebar ett stort genombrott. Vi
fortsätter i samma riktning och använder semide�nit programmering tillsammans
med slumpavrundning, och med dessa tekniker konstruerar vi för problemen Max
Set Splitting, Max 3-Horn Sat, Max E2-Lin mod p och Max p-Section algoritmer
som är bättre än den algoritm som väljer en slumpvis lösning. Om man inskränker
sig till täta instanser blir många villkorsproblem lättare att approximera. Vi ger ett
approximationsschema för familjen Max Ek-Function Sat mod p av villkorsproblem
över Zp. Vi bevisar också undre gränser för approximerbarheten hos Max k-Horn
Sat och Max E2-Lin mod p. Med undre gräns menas här ett bevis för att det inte går
att approximera ett problem inom en viss approximationsfaktor om inte P =NP.

Nyckelord: komplexitetsteori, optimeringsproblem i NP, approximationsalgo-
ritmer, approximationsfaktor, villkorsproblem, semide�nit programmering, slump-
avrundning, undre gränser, approximationsscheman.
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Chapter 1

Introduction

1.1 Background

With the invention of computers in the 1940s, mathematicians were faced with
a problem only considered occasionally before: How to organize computations to
make them run as fast as possible. Before that, only some folklore methods were
known, e.g. for multiplying two numbers. There was no real need to study this
topic since humans could only perform small calculations by hand. Soon it became
clear that the task of �nding the best computational methods, algorithms, was hard
for many problems of interest.

1.2 An example of a computational problem

A company has capacity problems with its web server and has decided to invest
in another, identical, web server. The company wants to maximize returns on
investment, and the question is now how to use the new server in the best way
possible. The plan is to split the �les between the two servers.

Having two web servers instead of one immediately doubles the capacity, and
it appears as if this should remedy all problems for a while. This is however not
necessarily true: The limiting factor is not the capacity but rather congestion; a
period with very few requests for web pages can be followed by a burst of requests
during a short period of time.

The best use of the second web server is therefore to take care of the peak loads.
This can be done by analyzing the access logs for patterns. It turns out that some
�les are almost always accessed at the same time; e.g. if the web page index.html
contains the picture picture.jpg, then these two �les will almost always be re-
quested simultaneously. There are many such correlations due to pictures, frames,

1



2 Chapter 1. Introduction

Figure 1.1. Example of an access pattern graph.

style sheets, Java applets, and sound �les. This observation can be exploited as fol-
lows: Suppose that two �les are always accessed at the same time. Then throughput
is maximized if they are put on di�erent web servers.

The above ideas can be formalized into the following abstract mathematical
problem: Let N be the number of �les. For each �le, there is a set of �les that are
often accessed at the same time. This situation can be represented as the network
in Figure 1.1. Each circle, or vertex, corresponds to a �le, and each line, or edge,
between two vertices means that the corresponding �les are often accessed at the
same time.

This mathematical structure is called a graph, and the computational problem
is now how to divide the vertices into two halves of equal size such that the number
of edges connecting vertices in di�erent halves is maximized. Such edges are said to
be cut. A solution to the problem is a partition of the vertices (�les) into two halves
of equal size. The �les in the �rst half should be placed on the �rst web server,
and the second half on the second web server. This way the number of con�icting
requests is minimized.

The model does not take into account that the �les are of di�erent sizes. Note
that for small �les on modern hard disks, the disk seek time (which is constant)
exceeds the time to read the �le (which depends on its size). As many of the �les
downloaded from web servers are small, the simple model above might be useful
also in an application. The degree to which pairs of �les are accessed simultaneously
also varies, something which also can be incorporated into the model.

Given that a web server can house thousands of �les, a typical access pattern
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graph would be huge compared to the tiny example above. Finding the best way
to split the �les between the two web servers is clearly a task for a computer pro-
gram. But this task turns out to be too hard even for a computer � there are no
known algorithms capable of solving this problem in reasonable time when there
are thousands of vertices. The example above can be solved by considering all
the

�
12
6

�
=2 = 462 ways of forming the two halves, but when the number of �les is

increased to 50, still a very small instance of the problem, the number of combina-
tions grows to a massive 63205303218876. Clearly trying all

�
N
N=2

�
=2 possibilities is

infeasible once N becomes large. The fact that the number of combinations is large
does not necessarily mean that the problem is hard, but for this particular problem
we do not know of any method substantially better than trying all combinations.
The problem seems to be computationally hard.

Our hopes of �nding the best way to split the �les between the two web servers
in any realistic scenario appear to be small. The original problem remains, though:
We still have to come up with some scheme for dividing the �les between the web
servers, we just have to accept that �nding the best way of doing so is infeasible.
We have to relax our demands and instead of searching for the best solution, which
takes unreasonably long to �nd, settle for a good solution, hopefully much easier
to �nd. How can good be formalized in this context? One way is as follows: The
algorithm should always �nd a solution such that the number of cut edges is at
least 50% of the number cut by the best solution. It is easy to devise an algorithm
with this property which is fast enough also for very large problems (millions of
�les). On the other hand, 50% does not sound too impressive. Is it possible to
reach, say, 75% or 90% of the number cut by the best solution? This is the kind of
question we investigate in this thesis.

1.3 NP-completeness

The foundations of modern theoretical computer science are to some extent based

on the advances in optimization theory. This �eld developed rapidly in the late
1940s and 1950s, much because of Dantzig's discovery of the simplex method for
linear programs [27]. Several other important combinatorial problems, such as the
assignment problem and the maximum �ow problem, could be solved using the
simplex method.

An important problem which did not yield to the simplex method is the Travel-
ling Salesman Problem (TSP). In this problem, a salesman has a list of cities that
he must visit in some order and then return to the city from which he started.
The distance between each pair of cities is known, and the objective is to �nd the
shortest tour. Dantzig, Fulkerson and Johnson [28] solved a TSP instance with
49 cities using the simplex method and an idea based on cutting planes. In spite of
this partial success, the TSP seemed harder than the other combinatorial optimiza-
tion problems considered. New methods, especially cutting planes and a technique
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called branch and bound, made it possible to solve many larger instances, but no
systematic method with a proven bound on the running time emerged.

In 1965, Edmonds [29] conjectured that the reason why no e�cient algorithm
had been discovered for the TSP was that the problem is inherently intractable,
meaning that there is no algorithm which solves the problem on all instances in
reasonable time. He attached no precise meaning to the term �reasonable time�,
but a common de�nition since then is that a reasonable running time is one where
the number of steps is a polynomial in the size of the input. If the size of the
input is n bits, then the execution of the algorithm will consist of at most knc steps
where k and c are constants. The class of problems admitting such algorithms is
denoted P.

In the early 1970s, a better understanding of the relations between the com-
putational problems for which no e�cient algorithms were known was developed.
It turned out to be fruitful to consider decision problems rather than optimization
problems when doing so. A decision problem is a problem where the answer is
�yes� or �no�, e.g. �Is there a TSP tour of length at most 1000 kilometers?�. In
applications, optimization problems, e.g. �What is the shortest tour that passes
through all the cities?�, are more common, but decision problems are obviously
closely related. In a breakthrough paper, Cook [22] de�ned the class NP (short for
Non-deterministic Polynomial time) and showed that the satis�ability problem for
logical formulas is NP-complete. NP is the class of decision problems for which
a �yes�-solution can be veri�ed e�ciently, i.e., in time polynomial in the size of
the instance. The hardest problems in NP are the NP-complete problems. As
an example of a problem in NP, consider the decision problem version of TSP.
Suppose that somebody or something, typically a computer program, �nds a tour
of length at most 1000 kilometers. For a large instance, this might require a long
computation even for a fast computer. Having found the solution, it is very easy to
convince the user that there really is a solution of length at most 1000 kilometers
� if the computer outputs the solution, even a mere human can check by hand
that it really visits all cities and that it is not too long. The key property here is
that it is easy (polynomial time) to verify that the answer to the question �Is there
a TSP tour of length at most 1000 kilometers?� is indeed �yes�; �nding the answer
in the �rst place may be much harder. Also note that if the answer is �no, there
is no such tour�, then it is not apparent how one could verify this without solving
the problem from scratch. If the answer is �yes�, then the tour itself can be used
to check this claim, it can serve as a certi�cate of the claim, but if the answer is
�no�, no such natural certi�cate seems to exist. This asymmetry is a key property
of NP.

The NP-complete problems are the hardest in NP. Let A be an NP-complete
problem and B be an arbitrary problem in NP. Then for each instance IB of B,
there exists a polynomial-time reduction to an instance IA of A such that IA is
a �yes�-solution for A if and only if IB is a �yes�-solution for B. A consequence
of this is that if A is NP-complete, and there exists a polynomial-time algorithm
for A, then all problems in NP can be solved in polynomial time. Shortly after
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Cook's de�nition of NP and NP-completeness, Karp [62] showed that a number of
problems, including the TSP, are NP-complete. Since then, hundreds of problems
have been shown to be NP-complete (see [38] for an extensive list). Many of the
NP-complete problems have been subject to intense study for a long time, without
any e�cient algorithm being found for any of them. Because of this, it is widely
believed that P 6= NP. Many results in computer science, including this thesis, are
based on this assumption.

NP is a set of problems sharing a common property, namely the property that
a �yes�-solution can be veri�ed in polynomial time. We say that NP is a complex-
ity class. By categorizing problems into complexity classes, relationships between
problems can often become clearer. There is a plethora of complexity classes based
on di�erent categorizations of problems, some based on the time needed to solve a
problem and some based on other criteria.

One direction in research in theoretical computer science has always been to
search for better algorithms. An algorithm, and the analysis of it, gives an upper
bound on the computational resources required to solve a problem. There are sev-
eral di�erent kinds of computational resources that can be considered. The most
common are running time and memory, but in some models resources such as the
amount of communication between di�erent subsystems is the natural measure.
Another direction is to search for lower bounds. As opposed to improving algo-
rithms, this is a non-constructive e�ort: A lower bound is a mathematical proof
that a problem cannot be solved with less resources than some function of the size of
the instance. Proving lower bounds is usually harder than �nding algorithms, and
for most problems no good lower bounds are known � the best lower bounds are
often trivial, stating that an algorithm must read the entire input before producing
a result. The ideal situation would be to prove a lower bound matching the best
algorithm, or upper bound, for a problem. One example of a problem for which
this is the case is the problem of sorting a sequence of n elements from some total
order, such as the integers, using only comparisons. For this problem it has been
proven that roughly n logn comparisons are needed, and this is attained by several
well-known sorting algorithms (heap sort, merge sort and some versions of quick
sort). For most other problems of interest, such as the NP-complete problems, not
much is known. It has been conjectured that the NP-complete problems require
time exponential in the size of the input, but proving this seems to be very di�-
cult. The current state of a�airs is that it is not even known if the NP-complete
problems can be solved in time linear in the size of the instance.

1.4 Approximation algorithms

An NP-completeness proof for a decision problem is a strong indication that the
corresponding optimization problem is hard to solve optimally. One way to attack
such problems is to use heuristics, which typically are implementations of vari-
ous rules-of-thumb combined with searches among some of the possible solutions.
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Johnson [54] was the �rst to introduce approximation algorithms with polynomial
running time guaranteeing that the solution output is within some factor of the
optimal solution. (This is usually not the case for heuristics.) Since then, approxi-
mation algorithms have been derived for a large number of problems.

In Section 1.2 we considered the abstract problem arising from an application
in web servers, and mentioned that it is easy to �nd a division of the �les with
an objective function value at least 50% of that of the optimal solution. This
means that the performance guarantee is 0.5; another way of saying this is that
the algorithm is a 0.5-approximation algorithm. A better approximation algorithm
has a higher performance guarantee, an algorithm always solving the problem op-
timally would be a 1-approximation algorithm. The best known approximation
algorithm for the web server problem, usually referred to as the Max Bisection
problem, is due to Ye [85] and has a performance guarantee of 0.699. For mini-
mization problems, one usually considers the performance ratio, which is the ratio
between the value of the solution found and that of the minimal solution. This
ratio is at least 1 with equality if and only if the algorithm always �nds the optimal
solution.

All the NP-complete problems are in some sense equally hard to solve, and
this also carries over to the optimization versions of these problems � the best
algorithms for all such problems have running times that are exponential in the
size of the input. The TSP can easily be solved in time n22n where n is the number
of cities. It seems natural to expect that these optimization problems are equally
hard also when searching for approximate solutions. This turns out not to be the
case; among the NP optimization problems there is a vast di�erence in the degrees
of approximability. The reason for this is that the reductions that connect the NP-
complete problems are only valid for decision problems, they do not preserve the
objective function values when applied to the corresponding optimization problems.
As an example of this, consider the problems mentioned so far in this chapter: TSP
and Max Bisection. It is easy to prove that TSP cannot be approximated within any
constant factor unless P = NP, whereas there exists an algorithm approximating
Max Bisection within 0.699.

The NP-complete problems arise in a number of di�erent �elds such as logics,
geometric algorithms, packing etc. This diversity is re�ected in the design of ap-
proximation algorithms for these problems � many di�erent techniques are used.
Standard computer science paradigms such as dynamic programming are common,
and combinatorial optimization methods for continuous problems, such as linear
programs, are also used frequently.

Lower bounds have been studied also in the context of approximation algo-
rithms. The focus in this �eld is to prove bounds on how well a problem can be
approximated. All such lower bounds are subject to some assumption on the re-
lation between complexity classes, the most common (and in some sense weakest)
being that P 6= NP. Such an assumption is quite natural, since if P = NP all
optimization problems corresponding to NP-complete decision problems could be
solved to optimality in polynomial time.
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1.5 Recent developments in the �eld of approxima-

tion algorithms

In this section, some of the most important recent results are surveyed, with a bias
towards the areas covered in this thesis. The results fall into three distinct cate-
gories, and within each category the results are given in the chronological order in
which they appeared. Some of the results were �rst presented at major conferences,
and then a few years later published in journals. In such cases, references are made
to both versions. For a more thorough account of what is known for di�erent prob-
lems, the reader is referred to the book by Ausiello et al. [18] which contains the
state of the art (as of 1999) for more than 200 di�erent optimization problems.

1.5.1 Semide�nite relaxations

Many NP optimization problems can be cast as integer programs. While this does
not immediately lead to good algorithms � solving integer programs isNP-hard �
it can sometimes be useful in the design of approximation algorithms. Relaxations
of integer programs into linear programs have been used in approximation algo-
rithms for a long time. An important property of such relaxations is that they can
be solved in polynomial time [58, 64]. For some problems, the natural integer pro-
gram formulations are non-linear. This complicates matters as solving non-linear
optimization problems is hard. There are, however, some classes of such problems
that can be solved in polynomial time.

In a breakthrough result, Goemans and Williamson [39, 40] showed how re-
laxations of quadratic integer programs to semide�nite programs could be used
when designing approximation algorithms. Semide�nite programs are a special
case of convex programs, and they can be solved (almost) to optimality in poly-
nomial time using interior-point methods (see e.g. [2]). Goemans and Williamson
showed how randomized rounding could be applied to the optimal solution to the
semide�nite relaxation of the integer quadratic program corresponding to the Max
Cut problem, and thereby achieved a 0.878-approximation algorithm. This was
a huge improvement from the previous best approximation algorithm, which had
a performance guarantee of 0.5 [76]. They applied the same technique to several
other problems, obtaining a 0.878-approximation algorithm for Max 2-Sat and a
0.796-approximation algorithm for Max Dicut; the previous best algorithms had
performance guarantees of 0.75 and 0.25 respectively.

Several other authors extended Goemans and Williamson's ideas to other prob-
lems, and many improved approximation algorithms followed, among others the fol-
lowing: A 0.931-approximation algorithm for Max 2-Sat by Feige and Goemans [31],
an algorithm coloring 3-colorable graphs using O(n1=4 logn) colors by Karger, Mot-
wani and Sudan [56, 57], a

�
1�1=k+�(ln k=k2)

�
-approximation algorithm for Max

k-Cut by Frieze and Jerrum [35, 36], a 0.875-approximation algorithm for Max 3-Sat
by Karlo� and Zwick [59]. The result by Karlo� and Zwick is especially interesting
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as their algorithm matches the lower bound by Håstad [52]; their approximation
algorithm is provably the best possible for the Max 3-Sat problem unless P = NP.

Most of the problems for which semide�nite relaxations have been useful have
been constraint satisfaction problems: Given a set of local constraints over some
larger set, satisfy as many of the constraints as possible. There are some results for
other types of problems, e.g. the result by Karger, Motwani and Sudan mentioned
above, and semide�nite relaxations is potentially useful in many areas.

1.5.2 New polynomial time approximation schemes

The approximation algorithms mentioned above are all for problems for which a
constant performance guarantee strictly smaller than 1 is the best one can hope
for, unless P = NP [13]. For some problems there exist approximation algorithms
reaching a performance guarantee (or, for minimization problems, performance ra-
tio) arbitrarily close to 1. Such an algorithm is called a polynomial time approxima-
tion scheme (PTAS). The majority of the PTASs in the literature are for packing
and scheduling problems; an important early result in this domain is the PTAS for
bin packing by Karmarkar and Karp [61].

In the last few years, PTASs have been developed for other classes of problems.
Arora [9, 10] devised PTASs for a number of important geometric problems in R2

with the Euclidean metric: TSP, Steiner tree, k-MST, and k-TSP. These schemes
are all based on dynamic programming and a clever subdivision scheme.

Another class of problems where PTASs have recently been developed is con-
straint satisfaction problems restricted to dense instances. An instance is dense if
it contains a large fraction of the full set of possible constraints. Arora, Karger
and Karpinski [11, 12] constructed PTASs for many such problems, including dense
Max Cut and dense Max k-Sat. There algorithms are based on exhaustive sam-
pling: Because of the denseness of the instances considered, it su�ces to sample a
small part of the instance to retrieve the information needed for �nding an almost
optimal solution. In an independent work, Fernandez de la Vega [34] used another
sampling method to construct a PTAS for Max Cut. These techniques were re�ned
by Goldreich, Goldwasser and Ron [41, 42] who obtained PTASs for other problems.

1.5.3 Probabilistically checkable proofs

Research in lower bounds on the approximability of various problems had little
success until the early 1990s. Before that, only a few lower bounds were known,
and there were no general techniques. Somewhat surprisingly, developments in
interactive proofs and program checking came to good use when proving lower
bounds. An interactive proof is essentially a game between two players, where one
of the players, the veri�er, has limited computational resources and tries to deduce
the truth of some statement by making queries to the other player, the prover, who
is computationally unbounded. The veri�er's goal is to decide probabilistically if
x 2 L where L is some language; the usual de�nition of decide is that the error
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probability is some constant strictly less than 1=2. The number of queries made
by the veri�er is at most a polynomial in the size of x. In two breakthrough
papers, Lund et al. [68, 69] and Shamir [79, 80] developed an algebraic way to
describe interactive proofs and used this to show that IP = PSPACE. That is,
the languages that can be decided by an interactive proof system are exactly those
that can be decided in polynomial space.

In 1991, Feige et al. [32, 33] derived a connection between verifying a probabilis-
tically checkable proof and approximating the Max Clique problem. This implied
that �nding a constant-factor approximation algorithm is almost NP-hard. One
year later, Arora and Safra [15, 16] and Arora et al. [13, 14] used coding theory
to prove that NP = PCP(logn; 1), the PCP theorem. This result states that a
claim that x 2 L, where L is some NP-complete language, can be veri�ed prob-
abilistically by reading some proof � at a constant number of randomly chosen
positions. A consequence of the PCP theorem is that there exist constants "1; "2
between 0 and 1 such that Max Clique cannot be approximated within n"1 un-
less P = NP, and that Max 3-Sat cannot be approximated within 1 � "2 unless
P = NP. Some years earlier, Papadimitriou and Yannakakis [73, 74] had de�ned
the class Max-SNP, and showed that Max 3-Sat is complete for this class under
so called L-reductions. When combined with the lower bound for Max 3-Sat which
follows from the PCP theorem, it follows that there for every Max-SNP-complete
problem P exists a constant "P > 0 such that it isNP-hard to approximate the op-
timum within 1�"P . In a sequence of papers, improvements were made to the PCP
constructions and therefore also to the lower bounds. For the Max Clique problem,
Håstad [50, 51] showed that it is NP-hard to �nd a clique within n1=2�" of the size
of the largest clique and that it is almost NP-hard to �nd a clique within n1�" of
the largest clique, for all " > 0. Håstad also showed that approximating Max 3-Sat
within 7=8+ " is NP-hard for all " > 0 [52], a result which, as mentioned above, is
tight � Karlo� and Zwick [59] have constructed a 7=8-approximation algorithm.

Håstad's PCP constructions have had implications for many other problems, es-
pecially when combined with the new gadget construction techniques by Trevisan
et al. [81]. In this work, it is shown how optimal combinatorial reductions using
local substructures, so called gadgets, can be found for many problems by solving
a linear program. By combining optimal or near-optimal gadgets with PCP con-
structions, lower bounds can be obtained for new problems without giving explicit
PCP constructions.

1.6 Thesis topics

The main theme of this thesis is approximation algorithms for NP maximization
problems. A common feature of all problems considered is that they are based
on constraint satisfaction: The goal is to satisfy as many constraints as possible
from a given set, with all constraints sharing the same underlying variable set. In
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most problems, non-negative weights may be associated with the constraints, but
for some only unweighted instances are allowed.

All these problems have the following property in common: It is easy to �nd
an assignment to the variables that gives a solution approximating the optimum
within some constant factor. Simply picking a solution uniformly at random from
the solution space achieves this on average. Consider the Max Cut problem, where
the objective is to partition the vertices of an undirected graph into two parts as
to maximize the number of cut edges. A randomized algorithm for this problem is
as follows: To decide in which part to put a vertex, toss an unbiased coin. Repeat
this for all vertices and a partition is formed. Consider an edge in the graph. It
is cut if the �rst vertex is in part 1 and the second in part 2, or vice versa. The
probability of this event is 1=2, and by the linearity of expectation, the average
number of edges cut by the random partition is half the number of edges in the
graph. This means that the simple approximation algorithm described above is a
1=2-approximation algorithm on average. (It can be converted into a deterministic
greedy algorithm with the same performance.) Somewhat surprisingly, this was
the best known approximation algorithm for Max Cut until 1994, when Goemans
and Williamson [39, 40] gave a 0.878-approximation algorithm. Max Cut is not
the only problem for which picking a solution at random gave the best known
approximation algorithm for a long time. For Max Sat, this was the case until 1992
when Yannakakis [83, 84] presented a 0.75-approximation algorithm. Yannakakis
algorithm was based on a reduction to the maximum �ow problem while most other
recent papers in the �eld have used semide�nite programming.

The prime issue in this thesis is investigating problems for which no better
approximation algorithm than picking a solution at random were known. The
problems are formulated as discrete optimization programs, which are relaxed to
semide�nite programs. By applying randomized rounding schemes, and in some
cases performing extra post-processing steps, we show how to �nd an approximate
solution with performance guarantee strictly greater than that obtained by picking
a solution at random. Most approximation algorithms using semide�nite program-
ming have only considered problems where all variables are binary; one of our results
is for linear equations where the domain of all variables is Zp. We also give a PTAS
for dense instances of this problem, as well as the generalization where arbitrary
functions are allowed. For some of the problems, we also obtain improved lower
bounds by constructing new gadgets, both by hand and by adapting the gadget
construction techniques by Trevisan et al. [81].

1.7 Overview of the thesis

Chapters 2�4 serve as a background to the rest of the thesis. Notation and termi-
nology from theoretical computer science and mathematics is covered in Chapter 2,
while Chapters 3 and 4 contain detailed descriptions of semide�nite programming
and techniques for proving lower bounds.
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Chapter 5 describes an approximation algorithm for the Max Set Splitting prob-
lem. The algorithm is based on a reduction to Goemans-Williamson's algorithm
for the Max Cut problem combined with a random perturbation. It is based on
the journal article [5], co-authored with Lars Engebretsen. My contribution to this
article is approximately 50%.

Chapter 6 investigates the approximability properties of the Max k-Horn Sat
problem. For k = 3, an approximation algorithm based on semide�nite program-
ming is provided, and for k 2 f2; 3; 4g, lower bounds on the approximability are
computed using optimal gadget reductions. The material in this chapter has not
been published previously.

Chapter 7 deals with linear equations over Zp where all equations contain pre-
cisely, or at most, two variables. Approximation algorithms for di�erent variations
of this problem are given, and a constant lower bound is provided through a gadget
reduction. This chapter is based on the full version of the conference paper [7]
(submitted for journal publication), co-authored with Lars Engebretsen and Johan
Håstad. My contribution to the journal submission is about 30%, but not every-
thing in the journal submission has been included in this thesis, so my contribution
to this chapter is about 40%.

Chapter 8 contains an approximation algorithm based on semide�nite program-
ming for the Max p-Section problem. It is based on the conference paper [4].

Chapter 9 describes a polynomial-time approximation scheme for dense in-
stances of the Max Ek-Function Sat mod p problem. The main technique used is
exhaustive sampling. The chapter is based on the conference paper [6], co-authored
with Lars Engebretsen. My contribution to this chapter is about 50%.

Chapter 10 contains a brief outlook and a discussion on the veri�ability of the
results that are based on calculations performed by computer programs.
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Chapter 2

Preliminaries

2.1 Basic notation

R is the set of real numbers, Z the set of integers, Zp the set of integers modulo p,
and Z�

p = Zp nf0g. The n-dimensional Euclidean space is denoted Rn; the (n�1)-

dimensional hypersphere in Rn is denoted Sn�1.
The inner product of two n-dimensional vectors v1 and v2 is denoted hv1; v2i.

The norm of a vector v is denoted kvk; it satis�es kvk = hv; vi1=2.
A regular k-simplex is a set of k unit-length vectors in Rk�1 such that all

pairwise inner products are equal to �1=(k � 1).
Boolean OR (disjunction) of two logical variables x and y is denoted x _ y,

boolean AND (conjunction) is x ^ y, boolean XOR (exclusive OR) is x � y. The
negation of the boolean variable x is :x. A literal is a boolean variable or a negated
boolean variable. A boolean formula � is in conjunctive normal form (CNF) if it
is the conjunction of a set of clauses where each clause is either a literal or the
disjunction of two or more literals.

The sign function sgnx is de�ned as follows:

sgnx =

8><
>:
+1 if x > 0,

0 if x = 0,

�1 if x < 0.

2.2 Basic probability theory

For an event A, the complement is denoted A while the probability of the event
is denoted Pr[A]. For a random variable X , the expected value (or mean) and
variance are denoted E[X ] and Var[X ] respectively. The standard deviation of X
is denoted �X .

The following two theorems connect these entities.

15
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Theorem 2.1 (Markov's inequality). Let X be a random variable only assum-
ing non-negative values. For all t > 0,

Pr
�
X � t

�
� E[X ]

t
:

Theorem 2.2 (Chebyshev's inequality). Let X be a random variable with ex-
pected value � and standard deviation �. For all t > 0,

Pr[jX � �j � t�] � 1

t2
:

Let fAig be a set of events and fXig be a set of random variables. Then

Pr
�
[Ai

�
�
P

Pr[Ai];

E
�P

Xi

�
=
P

E[Xi]:

2.3 Running time of algorithms

In all analyses of running times of algorithms considered in this thesis, the standard
unit-cost model is assumed. The running time is measured as a function of the size
of the input to the algorithm in some reasonable encoding. For graph algorithms,
it is typically given as a function of the number of vertices in the graph.

When expressing asymptotic relations, e.g. for time complexity, the following
standard notation will be used:

� f(n) 2 O(g(n)) if there exist c;N > 0 such that f(n) < cg(n) for all n > N .

� f(n) 2 
(g(n)) if there exist c;N > 0 such that f(n) > cg(n) for all n > N .

� f(n) 2 �(g(n)) if there exist c1; c2; N > 0 such that c1g(n) < f(n) < c2g(n)

for all n > N .

2.4 Approximability

Many NP-complete decision problems have natural optimization versions; some as
maximization problems, and some as minimization problems. These two classes of
problems behave in di�erent ways when it comes to the existence of approximation
algorithms. All new results in this thesis are for maximization problems.

De�nition 2.3. AnNP optimization problem P is characterized by the quadruple
(IP ; SOLP ;mP ; goalP ) where

1. IP is the set of instances of P . It must be recognizable in polynomial time.
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2. SOLP is a function that maps an input instance x onto the set of feasible
solutions for x. There must exist a polynomial q(x) such that for any y 2
SOLP (x), jyj � q(jxj). Furthermore, for any y such that jyj � q(x), it must
be decidable in polynomial time whether y 2 SOLP (x).

3. mP is a polynomially computable measure function which maps a pair (x; y),
where x 2 IP and y 2 SOLP (x), onto the value of y.

4. goalP 2 fMIN;MAXg speci�es whether P is a minimization or maximization
problem.

Solving an NP maximization problem P , given an instance x, means �nding a
feasible solution y such that the objective function value mP (x; y) is maximized.
We denote the optimal value maxymP (x; y) by optP (x). When it is clear from the
context what problem is being considered, the subscript will often be omitted.

De�nition 2.4. Let x be an instance of an NP maximization problem P and let
optP (x) be its optimum value. For any solution y to x, the performance guarantee
is de�ned as gP (x; y) = mP (x; y)= optP (x).

De�nition 2.5. An approximation algorithm A for an NP maximization prob-
lem P has performance guarantee g < 1 and performance ratio 1=g if, for all input
instances x, gP (x;A(x)) � g.

The de�nition of performance ratio is extended to minimization problems by
instead considering the ratio optP (x)=mP (x; y); this way it is at least 1 for all
problems. An approximation algorithm for P with performance guarantee g is
often referred to as a g-approximation algorithm, or an algorithm approximating
P within g.

De�nitions 2.4 and 2.5 can be extended to de�ne expected performance guar-
antee for randomized approximation algorithms: mP (x; y) and mP (x;A(x)) are
replaced by their expected values E[mP (x; y)] and E[mP (x;A(x))] respectively.

We are only interested in approximation algorithms that run in polynomial
time; even when the running time is not mentioned explicitly, this will be assumed
throughout the thesis.

De�nition 2.6. The classApx is the class of NP optimization problems for which
there exist approximation algorithms with constant performance ratios.

Some problems in Apx are approximable within any constant:

De�nition 2.7. A polynomial time approximation scheme for a maximization prob-
lem P with objective function mP (�) is a family fA"g, " > 0, of algorithms with
polynomial running time (for �xed ") such that mP (A"(I)) � (1 � ") optP (I) for
all instances I of P .
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One can also consider randomized polynomial time approximation schemes, for
which m(A";Æ(I)) � (1 � ") opt(I) holds with probability at least 1 � Æ for all
instances I . Note that the running time, although polynomial in the size of the
instance, can depend on " and Æ.

De�nition 2.8. PTAS is the class of NP optimization problems for which there
exist polynomial-time approximation schemes.

Clearly PTAS � Apx, and it was shown by Arora et al. [14] that the inclusion
is strict unless P =NP.

De�nition 2.9. Max-SNP is the class of NP optimization problems that can be
written in the form

max
S

���x : �(I; S; x)
	��;

where � is a quanti�er-free formula, I an instance and S a solution. (This class is
called Max-SNP0 in [72].)

This de�nition was inspired by Fagin's characterization of NP [30]. It is general
enough for Max-SNP to contain many natural problems. For instance, the Max
Cut problem is in Max-SNP since it can be expressed as

max
S�V

jf(x; y) : E(x; y) ^ S(x) ^ :S(y)gj;

where E(x; y) is true if there is an edge (x; y) in the graph and thus plays the role
of I in the de�nition above.

Theorem 2.10. [74] For every problem P 2 Max-SNP there exists a constant
cp > 0 such that there is a cp-approximation algorithm for P .

Theorem 2.11. [14] If the problem P is Max-SNP-complete, then there exists a
constant " > 0 such that there does not exist a (1� ")-approximation algorithm for
P unless P = NP.

A problem P is Max-SNP-complete if it is in Max-SNP and there exist L-
reductions (de�ned in [74]) from all Max-SNP problems to P .

Thus, all Max-SNP-complete problems have the property that they can be
approximated within some constant factor, but there does not exist a polynomial
time approximation scheme unless P = NP. An example of aMax-SNP-complete
problem is Max Cut.

2.5 Problems

2.5.1 Constraint satisfaction problems

Most problems considered in this thesis belong to the family of constraint satisfac-
tion problems. We will use the notation of Trevisan et al. [81].
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De�nition 2.12. A constraint function of arity k over Zp is a function f : Zk
p !

f0; 1g.

De�nition 2.13. A constraint family over Zp is a �nite collection of constraint
functions over Zp.

De�nition 2.14. A constraint C on the variables x1; : : : ; xn over a constraint
family F is a (k + 1)-tuple (f; i1; : : : ; ik) where f 2 F has arity k and i1; : : : ; ik
are distinct integers in f1; : : : ; ng. The value of the constraint for an assignment
a to x is C(ai1 ; : : : ; aik ) = f(xi1 ; : : : ; xik ) where a value of 1 corresponds to the
constraint being satis�ed.

De�nition 2.15. For a constraint family F over Zp, the constraint satisfaction
problem MAX(F) is de�ned as follows: An instance consists of m constraints
C1; : : : ; Cm 2 F on n variables x1; : : : ; xn 2 Zp. Each constraint Ci has a non-
negative weight wi. The objective is to �nd an assignment a1; : : : ; an to the vari-
ables such that

Pm
i=1 wiCi(a) is maximized.

2.5.2 Speci�c problems

De�nition 2.16. TheMax Cut problem is that of �nding a partition of the vertices
of a graph G = (V;E) with weights wij associated with the edges into two subsets
so as to maximize the total weight of the edges cut by the partition.

Max Cut can be cast as a binary CSP as follows: There are n = jV j variables
x1; : : : ; xn corresponding to the vertices of the graph. Each edge (vi; vj) corresponds
to the constraint xi � xj with weight wij .

Max Cut is a special case of Max p-Cut:

De�nition 2.17. The Max p-Cut problem is that of �nding a partition of the
vertices of a graph G = (V;E) with weights wij associated with the edges into p

subsets so as to maximize the total weight of the edges cut by the partition.

In Max p-Cut, the subsets formed need not be balanced, i.e., some subsets
may contain more vertices than others. In the problem Max p-Section, this is not
allowed:

De�nition 2.18. The Max p-Section problem is that of �nding a partition of the
vertices of a graph G = (V;E) with weights wij associated with the edges into p

subsets of equal size so as to maximize the total weight of the edges cut by the
partition. For a solution to exist, p must divide jV j.

The special case when p = 2 is called Max Bisection.

De�nition 2.19. The Max Ek-Sat problem takes as input a set of boolean vari-
ables x1; : : : ; xn and a collection of clauses C1; : : : ; Cm with non-negative weights
w1; : : : ; wm. Each clause is a disjunction of exactly k variables. The objective is to
�nd a truth assignment that maximizes the total weight of satis�ed clauses.
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We will also encounter the variation Max k-Sat where we also allow clauses that
contain less than k variables.

A Horn clause contains at most one negated variable. The Max k-Horn Sat
problem is the same as the Max k-Sat problem restricted to instances where all
clauses are Horn clauses.

De�nition 2.20. Let S be any �nite set, fSjgnj=1 be a collection of subsets of S,
and fwjgnj=1 be a collection of positive weights corresponding to each subset re-
spectively. The Max Set Splitting problem is that of �nding a partition of S into
two sets that maximizes the total weight of the subsets Sj that are split by the
partition.

The Max Ek-Set Splitting problem is the restriction of the Max Set Splitting
problem to instances where each subset contains exactly k elements.

De�nition 2.21. Let fxigmi=1 be a collection of boolean variables, fCjgnj=1 be a
collection of CNF clauses over those variables, and fwjgnj=1 be a collection of posi-
tive weights corresponding to each clause respectively. The Max NAE Sat problem
is that of �nding a truth assignment to the boolean variables that maximizes the
total weight of the clauses that contain both true and false literals.

Note that Max Set Splitting is the special case of Max NAE Sat where no
negations are allowed.

A large part of this thesis deals with linear equations over Zp. This non-binary
CSP is de�ned as follows:

De�nition 2.22. We denote byMax Ek-Lin mod p the problem in which the input
consists of a system of linear equations mod p in n variables. Each equation contains
exactly k variables. The objective is to �nd the assignment maximizing the number
of satis�ed equations.

In the variation Max k-Lin mod p we allow equations with less than k variables
in each equation.

The linear functions are the most basic functions over Zp. By allowing any
function instead of just linear functions, Max Ek-Lin mod p can be generalized to
the following problem:

De�nition 2.23. We denote byMax Ek-Function Sat mod p the problem in which
the input consists of a number of functions Zk

p 7! Zp in n variables. A function is
satis�ed if it evaluates to zero. The objective is to �nd the assignment maximizing
the number of satis�ed functions.



Chapter 3

Randomized approximation

algorithms and relaxations

In this chapter we will give a brief introduction to the �eld of randomized approx-
imation algorithms, focusing on the techniques used in the rest of the thesis.

3.1 Trivial approximation algorithms

For some problems, a very unsophisticated approach can result in an approximation
algorithm with a provable performance guarantee. As an example, we will consider
the Max E3-Sat problem. An instance of this problem is a set of clauses where
each clause is a disjunction of exactly three literals, e.g. x _ y _ :z. A clause must
contain three distinct variables. The objective is to �nd a truth assignment that
maximizes the number of satis�ed clauses. Let m be the number of clauses.

Consider the following approach: For each logical variable, let it be true with
probability 1=2 and false with probability 1=2. All random choices are made inde-
pendently. What is the performance of this extremely simple scheme, which does
not use the structure of the clauses? Consider a clause C. There are 23 = 8 di�erent
truth assignments to the literals in the clause, each with probability 1=8 of being
chosen by the algorithm. Of these 8 assignments, only 1 will result in the clause not
being satis�ed. We conclude that the probability that the clause is satis�ed is 7=8.
This holds for all the m clauses, and because of the linearity of expectation, the
expected number of clauses satis�ed by a random assignment is 7m=8. Obviously
the maximum number of clauses that can be satis�ed by any assignment is at most
m, the total number of clauses. Therefore the expected performance guarantee is
at least 7=8.

The above approximation algorithm uses randomization, so for a particular
random choice the actual number of satis�ed clauses can be much less than 7m=8.
Running the algorithm several times and taking the best assignment found reduces

21



22 Chapter 3. Randomized approximation algorithms and relaxations

the probability of this happening. Another approach is to convert the above algo-
rithm into a deterministic approximation algorithm. This can be done using the
method of conditional expectation (see e.g. [3]).

As a general technique, the naive approximation algorithm �pick a solution at
random from the solution space� is applicable for many problems, and for many
maximization problems it leads to good approximation algorithms. In fact, the
approximation algorithm for Max E3-Sat described above is the best possible; no
approximation algorithm can approximate the optimum within 7=8+" for any " > 0

unless P = NP [52]. For several other problems, such as Max E2-Sat and Max
Cut, it was only recently, with the advent of algorithms based on semide�nite pro-
gramming, that the naive randomized algorithm was surpassed. A central theme in
this thesis is to investigate for what problems there exist approximation algorithms
better than picking a solution at random.

3.2 Linear programming relaxations

Consider the Min Vertex Cover problem. An instance of this problem is an undi-
rected graph G = (V;E) where each vertex vi has a non-negative weight wi. The
objective is to select a subset U of the vertices such that every edge contains at
least one vertex from U and the sum of the weights of vertices in U is minimal.
Let us now introduce a 0/1-variable xi corresponding to each vertex vi, with the
meaning that xi = 1 corresponds to vi 2 U and xi = 0 corresponds to vi 62 U . We
can now formulate Min Vertex Cover as the following integer program:

minimize
X
i

wixi

subject to xi + xj � 1 for all edges (vi; vj) 2 E,
xi 2 f0; 1g for all i.

(3.1)

No e�cient algorithm is known for solving integer programs, and there cannot exist
any unless P = NP, so the above formulation does not help us solve the Min Vertex
Cover problem. It does however guide us to a natural relaxation which helps us
�nd a good approximation algorithm. Let us relax the last constraint:

minimize
X
i

wiyi

subject to yi + yj � 1 for all edges (vi; vj) 2 E,
0 � yi � 1 for all yi.

(3.2)

This linear programming (LP) relaxation can be solved in polynomial time, either
using Khaciyan's ellipsoid method [64] or some interior point method based on
the ideas of Karmarkar [60]. In practice, the algorithms most commonly used are
variations of Dantzig's simplex algorithm [27], see any textbook on optimization,
even though it requires exponential time in the worst case. Denote the optimum
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values for (3.1) and (3.2) by optIP and optLP respectively. As (3.2) is a relaxation
of (3.1), the relation optLP � optIP holds.

Having solved the LP (3.2), we are now faced with the problem of converting
the optimal solution into a good solution to the Min Vertex Cover problem. If the
optimal LP solution only contains integral values, which means that it is feasible
for the IP (3.1), then we have a feasible (and even optimal) solution to the Min
Vertex Cover problem. In general, this is not the case, and we have to devise a
rounding scheme which converts the fractional LP solution to an integral solution,
which hopefully has an objective function value, i.e., weight of the vertex cover,
close to the LP solution.

Let y� denote the optimal solution to the LP (3.2). Consider the following
rounding scheme:

xi =

(
1 if y�i � 0:5,

0 if y�i < 0:5.

That this gives a feasible solution to (3.1) can be seen as follows: Consider an
inequality xi + xj � 1 of (3.1). The optimal solution y� satis�es the inequality
y�i + y�j � 1. This implies that maxfy�i ; y�j g � 0:5, and the rounding scheme will
therefore set at least one of xi and xj to 1; hence xi + xj � 1.

It remains to analyze the objective function value. A consequence of the round-
ing scheme is that xi � 2y�i for all i. The weight of the rounded solution therefore
satis�es X

i

wixi �
X
i

wi2y
�
i = 2optLP � 2optIP :

This means that the solution we obtain by solving the LP relaxation (3.2) and
applying the above rounding scheme gives a solution to the Min Vertex Cover
problem with weight at most twice that of the optimal solution. In the terminology
of Chapter 2 we have an approximation algorithm with performance ratio 2.

This approximation algorithm for Min Vertex Cover is due to Hochbaum [46].
A faster approximation algorithm, in which no linear program has to be solved, was
constructed by Bar-Yehuda and Even [20]. Both these approximation algorithms
have performance ratio 2, and this is in fact the best known for the Min Vertex
Cover problem in spite of large e�orts. The best non-approximability result, by
Håstad [52], is that it is NP-hard to achieve performance ratio 7=6 � " for any
" > 0.

3.3 Semide�nite programming relaxations

Relaxations of integer programs to linear programs have been used for constructions
of good approximation algorithms for many problems, but there are problems for
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which they are not useful. A natural approach is therefore to look for stronger re-
laxations, hopefully still solvable in polynomial time. However, it was only recently
that other relaxations than linear programs have started to become common in the
construction of approximation algorithms. In a breakthrough result by Goemans
and Williamson [40], it was demonstrated how relaxations to semide�nite programs
could be used in order to �nd better approximation algorithms for a number of
problems. Below, their approximation algorithm for the Max Cut problem is de-
scribed.

3.3.1 Goemans-Williamson's Max Cut relaxation

Given an undirected graph G = (V;E) with n vertices, which we for simplicity will
refer to as the integers 1; : : : ; n, where each edge (i; j) has a non-negative weight
wij . The maximum cut can be found by solving the following quadratic integer
program:

maximize
X
i<j

wij
1� xixj

2

subject to xi 2 f�1; 1g 8i.
(3.3)

The two sets in the cut (S; S) are formed by letting S = fi 2 V j xi = 1g.
While (3.3) is a very neat way to state the Max Cut problem, it is unfortunately

hard to solve; all variables are integers, and the objective function is non-linear.
With the objective function being non-linear, the hope of �nding a useful LP re-
laxation appears to be small. The key insight of Goemans and Williamson was
to replace each xi with a vector vi 2 Rn of unit length. The product xixj in
the objective function is then replaced by the inner product hvi; vji, leading to the
following relaxation:

maximize
X
i<j

wij
1� hvi; vji

2

subject to vi 2 Sn�1 8i.
(3.4)

This is a semide�nite program; we defer the discussion of how to solve it in poly-
nomial time to Section 3.3.4. We denote the optimum to the quadratic integer
program (3.3) by optQIP and the optimum to the semide�nite program (3.4)
by optSDP . As the latter program is a relaxation of the former, we know that
optSDP � optQIP holds.

3.3.2 Randomized rounding

Having solved the semide�nite program (3.4), we are now faced with the problem
of converting the optimal solution to a good integer solution. In Section 3.2 above,
we saw how a fractional solution to the LP relaxation of Min Vertex Cover could
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be converted into an integer solution using a deterministic rounding scheme. For
the Max Cut problem it turns out to be easier to construct a randomized rounding
scheme. Let v� be the optimal solution to (3.4). Choose a vector r randomly
with the uniform distribution from the unit sphere Sn�1. We can now construct a
feasible solution to (3.3) through

xi =

(
+1 if hv�i ; ri � 0,

�1 if hv�i ; ri < 0:
(3.5)

One can also de�ne the cut (S; S) directly through S = fi 2 V j hv�i ; ri � 0g.
(What happens when hv�i ; ri = 0 really does not matter as the probability of this
event is 0; we arbitrarily chose to set xi = 1 if that were to happen.)

We will next turn to analyzing the performance of the rounding scheme when
applied to the optimal solution to the SDP (3.4). Let W denote the weight of
the cut so obtained. As the rounding scheme is randomized, we will analyze the
expected value E[W ]. To characterize this expected value, we look at each term in

the objective function separately. Consider the term
1�xixj

2
, omitting its weight wij .

The corresponding term in the SDP relaxation is
1�hvi;vji

2 . What is the probability
that the vertices i and j are placed on di�erent sides of the cut? This happens
when the vectors vi and vj are separated by the hyperplane with normal vector r,
an event which occurs with probability �=� where � = arccoshvi; vji. Applying this
relation to each term in the objective function, we get

E[W ] =
1

�

X
i<j

wij arccoshvi; vji:

If we can �nd a bound of the form

E[W ]

optSDP
=

1
�

P
i<j wij arccoshvi; vjiP

i<j wij
1�v�i v

�

j

2

� �; (3.6)

we have shown that the rounding scheme achieves the (expected) performance guar-
antee �. This follows from

E[W ] � �optSDP � �optQIP

as (3.4) is a relaxation of (3.3). The terms of the sums in the numerators and
denominators of (3.6) are in obvious correspondence with each other, and as they
are non-negative, it su�ces to �nd a term-wise bound. This means �nding � such
that

� = min
vi;vj2Sn�1

2 arccoshvi; vji
�(1� hvi; vji)

:
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This ratio only depends on the inner product hvi; vji, so we make the substitution
� = arccoshvi; vji and arrive at the expression

� = min
�2[0;�]

2�

�(1� cos �)
:

Using calculus, it is easy to show that the minimum is � � 0:87856 and that it is
attained when � � 2:33112.

The conclusion of this derivation is that the rounding scheme (3.5) when ap-
plied to the optimal solution to the SDP relaxation (3.4) gives an approximation
algorithm with expected performance guarantee 0.87856 for the Max Cut problem.
That the above analysis is tight was shown by Karlo� [58]. The above algorithm
was �rst presented in [39]; before that the best known approximation algorithm,
due to Sahni and Gonzalez [76], had performance guarantee 0.5.

3.3.3 Max 2-Sat and more sophisticated rounding schemes

The ideas behind the Max Cut relaxation are fairly general, and Goemans and
Williamson applied them to a number of other problems. One of those was the Max
2-Sat problem. The input to this problem is a set of disjunctive clauses containing
at most two variables, but we will in what follows only describe what happens for
clauses containing exactly two variables � it is easy to generalize the algorithm to
also handle clauses containing a single variable.

Let x1; : : : ; xn be integer variables in f�1;+1g that correspond to the boolean
variables. We introduce new variables xn+1; : : : ; x2n such that xn+i = �xi. This
is a straightforward way of handling negated variables. We also add a new variable
x0. Variables xi for which xi = x0 are interpreted as being false, the others as
being true.

maximize
X
i;j

wijzij

subject to zij � 3�x0xi�x0xj�xixj
4 8i; j,

zij � 1 8i; j,
xn+i = �xi 8i,
xi 2 f�1; 1g 8i,
zij 2 f0; 1g 8i; j.

(3.7)

The variable zij is 1 if the clause containing the variables xi and xj is satis�ed
and 0 otherwise. Note that i and/or j can be larger than n; this is how clauses
containing negations are handled. As an example, the variable zn+i;j corresponds
to the clause where xi is negated and xj is not, i.e., :xi _ xj .

The above formulation of Max 2-Sat as an integer quadratic program follows the
notation of Karlo� and Zwick [59] and Zwick [86]; these papers describe a canonical
way of generating good relaxations of binary constraint satisfaction problems. It is
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however easily seen to be equivalent to Goemans-Williamson's original Max 2-Sat
formulation.

Just like for Max Cut, we can create a relaxation by expanding the domain of
the xi variables from f�1; 1g to Sn. This gives the following semide�nite program:

maximize
X
i;j

wijzij

subject to zij � 3�hv0;vii�hv0;vji�hvi;vji

4
8i; j,

zij � 1 8i; j,
vn+i = �vi 8i,
vi 2 Sn 8i,
0 � zij � 1 8i; j.

(3.8)

Note that the zij are relaxed as well, and their range is now [0; 1]. This corresponds
to clauses being fractionally satis�ed.

A slight variation of the hyperplane rounding for Max Cut can be used to
convert the optimal solution to the semide�nite program to a good solution to the
Max 2-Sat instance. We begin by choosing a vector r randomly with the uniform
distribution from the unit sphere Sn. An assignment to the logical variables can
be constructed using the following rule:

xi =

(
true if sgnhv0; ri 6= sgnhvi; ri,
false if sgnhv0; ri = sgnhvi; ri.

(3.9)

This simply means that the variables for which the corresponding vectors are on
the same side as v0 of the hyperplane with normal r through the origin are assigned
the logical value �false�, while those on the other side are assigned the logical value
�true�. It can be shown that this rounding scheme gives an approximation algorithm
with the same performance guarantee, 0.87856, as the Max Cut algorithm described
in Sections 3.3.1 and 3.3.2.

Feige and Goemans [31] came up with a variation of the above rounding scheme.
Their key observation was that it might be better to use other vectors than the vi in
(3.9). Each vi is therefore transformed into a vector v0i that is coplanar with vi and
v0 and only depends on these two vectors. The rounding scheme then proceeds to
operate on the v0i instead of the vi. Speci�cally, if the angle between vi and v0 is �i,
then the angle between v0i and v0 is f(�i) for some function f(�), the pre-rounding
rotation function. The restriction f(� � �) = � � f(�) is added. It guarantees
that negated and unnegated variables are treated in the same way. The question
is now what function f should be chosen. There is no known analytical expression
for the performance guarantee of the rounding scheme as a function of f , so one
has to resort to numerical methods for evaluating a particular function f . This can
be done by discretizing the set of possible angles between the vectors v0, vi and
vj ; there are three degrees of freedom for a con�guration as all that matters is the
angles between pairs of vectors.
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Figure 3.1. Feige-Goemans rotation function.

A good function can be found by trying di�erent functions, either by hand or
automatically, and picking the best. Feige and Goemans settled on the function
f(�) = �+0:806765(�

2
(1�cos �)��), depicted in Figure 3.1. It gives the performance

guarantee 0.93109 for the Max 2-Sat problem, an improvement over the 0.87856 of
Goemans and Williamson.

This shows how relatively small modi�cations of the solution to the semide�nite
program can result in a considerable improvement of the performance guarantee.
The di�culty lies in the choice of the rotation function f . When only three vectors
are involved, it is an easy matter to evaluate the performance numerically, but for
some problems one has to deal with four or more vectors. Finding a good rotation
function then becomes time-consuming; the in�nite space of functions on [0; �]

can be discretized by only considering piecewise linear functions, but the resulting
optimization problem is still very di�cult.

Halperin and Zwick [45] describe generalizations of the idea behind pre-rounding
rotations and also look into the problem of �nding the best rotation functions. They
study the Max 4-Sat problem and construct a 0.8721-approximation algorithm using
a very general model for how pre-rounding rotations can be used; they select a good
rounding scheme from this family using numerical methods. Because of Håstad's
lower bound for Max 3-Sat [52], there cannot exist an approximation algorithm
for Max 4-Sat with performance guarantee greater than 7=8 = 0:875. Halperin
and Zwick come very close to reaching this goal, but they also prove that their
techniques cannot give a 7=8-approximation algorithm without major changes. The
lower bound 7=8 also applies to the Max Sat problem, and it has been conjectured
that a 7=8-approximation algorithm exists for this problem; the best algorithm for
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this problem has performance guarantee 0.7846 [17].

3.3.4 Solving the relaxation

Consider the relaxation (3.4). Why is this a semide�nite program? An n � n-
matrix A is positive semide�nite if xTAx � 0 for all x 2 Rn. It can be shown (see
e.g. [43]) that for a symmetric matrix, this holds if and only if there exists another
matrix B such that A = BTB, where B is an m�n-matrix for some m � n. Given
a symmetric n�n-matrix A, such a B can be found in O(n3) time using incomplete
Cholesky decomposition. For a symmetric matrix A such that all diagonal elements
are one, the relation A = BTB can be interpreted as follows: A corresponds to n

vectors v1; : : : ; vn 2 Sm�1. This follows from letting the vector vi correspond to
the ith column of B, and letting the elements of A satisfy aij = hvi; vji. We can
now reformulate (3.4) as the semide�nite program

maximize
X
i<j

wij
1� aij

2

subject to aii = 1 8i
A symmetric positive semide�nite:

(3.10)

The optimum solution to a semide�nite program might be irrational, so there is
no hope of always �nding the solution in polynomial time. It is however possible
to �nd a solution within " of the optimum value in time polynomial in n and 1="

for any " > 0, and this su�ces for most applications of semide�nite programming
in approximation algorithms. The best methods for solving semide�nite programs,
see e.g. [2, 82], are interior-point methods working in the same vein as Karmarkar's
polynomial-time algorithm for linear programs [60].

3.3.5 Derandomization

The rounding scheme for Max Cut uses randomization. Is this an intrinsic prop-
erty of the algorithm, or is it possible to �nd a deterministic approximation al-
gorithm with the same performance? Goemans and Williamson [40] proposed a
simple derandomization scheme, but it was soon discovered to be faulty. Mahajan
and Ramesh [70] later presented a derandomization scheme for approximation al-
gorithms based on semide�nite programming, thus providing derandomization of
Goemans and Williamson's Max Cut algorithm as well as other algorithms. This
result may be interesting from a purely theoretical point of view, but in practice
one would instead reduce the probability of �nding a bad solution by running the
rounding scheme a number of times and picking the best cut so obtained. Even for
a large number of repetitions, this is far more e�cient than actually running the de-
randomized version of the algorithm. The reason for this is that Mahajan-Ramesh's
derandomization scheme is very complicated and has a huge running time.
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3.4 Connection to the rest of the thesis

Semide�nite programming with randomized rounding schemes is used extensively
throughout the thesis; Chapters 5�8 all contain approximation algorithms based
on this paradigm. Pre-rounding rotations like those described in Section 3.3.3 are
used in Chapter 6.



Chapter 4

Non-approximability results

As a complement to the search for better approximation algorithms for various
problems, proofs of non-approximability have also been constructed. The �rst such
proofs were typically based on direct combinatorial properties of the problem at
hand. Finding such properties was hard, and for most problems no inapprox-
imability results were known. In the last ten years, an advanced mathematical
framework has been developed which has produced many new lower bounds. For
some problems tight lower bounds have been proved; i.e., lower bounds that match
the performances of the best known approximation algorithms.

A lower bound for a particular problem P is typically stated as �if P could be
approximated within f(n), then P = NP� where f(n) is some function, in this
thesis always a constant, of the size of the instance of P . For some lower bounds,
assumptions stronger than P 6= NP are made.

4.1 Probabilistic proof systems

In the early 90s, advances in the theory of probabilistic proof systems produced
lower bounds using techniques from coding theory. The �rst results in this �eld
that had an impact on the �eld of approximation algorithms are due to Arora
et al. [14] building on the results of Arora and Safra [16].

De�nition 4.1. A language L is in PCP(f(n); g(n)) if there is a polynomial-time
randomized algorithm V �(r; x) that works as follows:

1. It takes as input a string x of length n and a random string of length O(f(n)).

2. It generates a query set Q(r; x) = fq1; : : : ; qmg of size m = O(g(n)).

3. It reads the bits �q1 ; : : : ;�qm .

4. It makes a polynomial-time computation using the data r, x and the proof
bits �q1 ; : : : ;�qm and outputs V �(r; x) 2 f0; 1g.

31
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Moreover, the following acceptance conditions hold for some Æ > 0 and for all x:

1. If x 2 L then there exists a � such that for every r we have M�(r; x) = 1.

2. If x 62 L then for every � we have Prr
�
M�(r; x) = 0

�
� Æ.

The intuition is that there exists a certain proof format that makes it possible to
check the proof in just a few places and still be able to discard strings not contained
in the language with probability Æ.

Theorem 4.2. [14] NP = PCP(logn; 1).

This is a remarkable result; in order to verify (probabilistically) that x 2 L

where L 2 NP, it su�ces to read only a constant number of bits from the proof!
This highly unnatural property can be achieved by coding the proof � using a
special error correcting code; each bit of a correct proof depends on a large fraction
of the bits in a certi�cate of the fact that x 2 L.

Corollary 4.3. [14] There exists a constant c < 1 such that it for all " > 0 is
NP-hard to approximate Max E3-Sat within c+ ".

The constant c in the proof in [14] is very close to 1, but in a sequence of
improvements of the PCP constructions it has since been reduced. For the purposes
of inapproximability results, the best PCP is that of Håstad [52]. He showed the
following central result:

Theorem 4.4. [52] For all " > 0 it is NP-hard to approximate Max E3-Lin mod 2

within a factor 1=2 + ".

This result is tight as a simple greedy algorithm satis�es at least half the total
weight of all equations and therefore has performance guarantee at least 1=2.

Corollary 4.5. [52] For all " > 0 it is NP-hard to approximate Max E3-Sat within
a factor 7=8 + ".

This result is also tight as the derandomized version of the naive randomized
algorithm (see Section 3.1) has performance guarantee 7=8.

A note on notation: When referring to inapproximability results such as Corol-
lary 4.5, the quali�er �For all " > 0� will often be omitted in running text. Fur-
thermore, all inapproximability results from now on are based on the assumption
P 6= NP. This will also be implicitly assumed in a number of places. In par-
ticular, Theorem 4.5 would be referred to as stating that Max E3-Sat cannot be
approximated within 7=8 + ".

The following theorem, implicit in [21], has been a source of a large number
of inapproximability results. It provides a connection between the tight inapprox-
imability result of Theorem 4.4 and the gadget construction techniques of Trevisan
et al. [81] (described in the next section).
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De�nition 4.6. The constraint families PC0 and PC1 (PC for Parity Check) are
de�ned through the relations

PCi(x; y; z) =

(
1 if x+ y + z = i;

0 otherwise.

Theorem 4.7. [21] If there exists an �0-gadget reducing PC0 to F and an �1-
gadget reducing PC1 to F , then for all " > 0, MAX(F) is hard to approximate
within 1� 1

�0+�1
+ ".

For many problems this theorem gives the best lower bounds currently known,
often close to the performances of the best approximation algorithms.

4.2 Finding optimal gadget reductions

In some cases it is possible to transfer a lower bound for one problem P1 to a
lower bound for another problem P2. This is done using combinatorial reductions
between the two problems, much in the same spirit as the reductions used to prove
NP-completeness. What lower bound one gets for P2 depends on how the reduction
is designed. Many, if not most, reductions are based on local replacement rules: A
substructure of an instance of P1 is transformed into another substructure, a gadget,
of an instance of P2. These local rules are easier to construct and analyze than
more global constructions. Until recently, there was no good measure of quality
for gadget reductions. Bellare, Goldreich and Sudan [21] proposed the following
de�nition which remedied this de�ciency:

De�nition 4.8. For � 2 R, a binary constraint function f of arity k and a binary
constraint family F , an �-gadget reducing f to F is a set of variables y1; : : : ; yn, a
�nite collection of real weights wj � 0, and associated constraints Cj from F over
primary variables x1; : : : ; xk and auxiliary variables y1; : : : ; yn, with the property
that, for boolean assignments a to x1; : : : ; xk and b to y1; : : : ; yn, the following are

satis�ed:

(8a : f(a) = 1)(8b) :
X
j

wjCj(a; b) � �;

(8a : f(a) = 1)(9b) :
X
j

wjCj(a; b) = �;

(8a : f(a) = 0)(8b) :
X
j

wjCj(a; b) � �� 1:

The gadget is strict if, in addition,

(8a : f(a) = 0)(9b) :
X
j

wjCj(a; b) = �� 1:
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� is the cost of the gadget; a smaller � gives a better lower bound for MAX(F).
This de�nition formalized arguments about gadgets, but the problem of �nding

good gadgets remained an ad hoc task. The ultimate goal would be to �nd an
optimal gadget and prove its optimality, but this was very hard to do by hand.
Trevisan et al. [81] showed that for a large class of problems, constraint satisfaction
problems of the formMAX(F) where F is a hereditary constraint family, an optimal
gadget can be found by solving a linear program. Many optimal gadgets have
since been found using this technique. The following exposition describes the key
de�nitions and theorems from that paper. For the sake of simplicity, all results are
stated for binary constraint functions. They can easily be generalized to hold for
constraint functions over Zp.

De�nition 4.9. A constraint family F is hereditary if for any f 2 F of arity k and
any two indices i; j 2 [k], the function f when restricted to assignments such that
xi = xj and considered as a function of k � 1 variables is identical to some other
function f 0 2 F [ f0; 1g.

f0g and f1g are the all-zero and all-one functions, respectively.

De�nition 4.10. For a constraint f , two variables ai and aj are distinct if there
exists an assignment a, satisfying f , for which ai 6= aj .

Theorem 4.11. [81] Let f be a constraint function of arity k with s satisfying
assignments. Let F be a constraint family and � � 1 be such that there exists an
�-gadget reducing f to F . If F is hereditary then there exists an �0-gadget with
at most 2s � k0 auxiliary variables reducing f to F , where �0 � �, and k0 is the
number of distinct variables among the satisfying assignments of f .

Theorem 4.11 restricts the search for optimal gadgets to gadgets with a bounded
number of auxiliary variables. This is an interesting result in itself, but Trevisan
et al. went on to prove an even stronger result: When Theorem 4.11 applies, an
optimal gadget can be found by solving a linear program.

De�nition 4.12. Consider a constraint function f of arity k with s satisfying
assignments and a hereditary constraint family F . The (f;F)-canonical witness
matrix is an s � (2s + k � k0)-matrix where all elements are 0 or 1. The �rst k
columns contain all the satisfying assignments of f (one per row) and the remaining
columns contain all possible columns that are distinct from each other and from
the columns corresponding to the primary variables.

A witness matrix M induces a natural mapping bM : fa 2 f0; 1gk j f(a) =

1g ! f0; 1g2s�k0 by looking at each row separately. The intuition here is that this
mapping speci�es the values of the auxiliary variables for each satisfying assignment.

De�nition 4.13. Consider a constraint function f of arity k and a constraint
family F . Let M be the (f;F)-canonical witness matrix and bM be the induced
mapping. Let C1; : : : ; Cm be all the possible constraints that can be created by
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applying a constraint from F to a set of k + n boolean variables. Thus for every
j, Cj : f0; 1gk+n ! f0; 1g. Let w1; : : : ; wm be the weights corresponding to the
constraints and � be the cost of the gadget. The linear program LP(f;F ;M; n) is
the following:

minimize �

subject to (8a : f(a) = 1) :
Pm

i=1 wiCi(a; bM (a)) = �,

(8a : f(a) = 1)(8b) :
Pm

i=1 wiCi(a; b) � �,

(8a : f(a) = 0)(8b) :
Pm

i=1 wiCi(a; b) � �� 1,
wi � 0 8i.

(4.1)

Theorem 4.14. [81] Let f be a constraint function of arity k with s satisfying
assignments and F be a hereditary constraint family. Then an optimal gadget re-
ducing f to MAX(F) can be found by solving LP(f;F ;M; n) for n = 2s� k0 where
k0 is the number of distinct variables among the satisfying assignments of f .

Note that the bound 2s � k0 on the number of auxiliary variables in Theo-
rems 4.11 and 4.14 is an upper bound; for constraint families F exhibiting sym-
metries, the bound can be lowered. In particular, for constraint families that are
symmetric with respect to negation, at most 2s�1�k0 auxiliary variables are needed.

The gadget construction method outlined above only works for weighted prob-
lems � unweighted problems would result in integer programs. For most problems,
this does not matter as Crescenzi, Silvestri and Trevisan [25] have shown that the
weighted and unweighted versions of a large class of problems are equally hard to
approximate. This holds for all problems considered in this thesis.

The feasibility of this approach for �nding optimal gadgets depends heavily on
the number of satisfying assignments for the source function f . The LP (4.1) has
m+1 variables, where m depends on F , and 22

s+k�k0 + s inequalities. This doubly
exponential dependency on s makes this approach infeasible unless s is small. In
view of the inapproximability results on Håstad, and especially Theorem 4.7, the
most natural functions to reduce from are PC0 and PC1, both having s = 4. The
resulting LPs are large but not intractably so for most target families F of interest.

4.3 Connection to the rest of the thesis

In Chapter 6, a variation of the gadget construction techniques described in Sec-
tion 4.2 is used to �nd provably optimal gadgets as well as strong lower bounds. In
Chapter 7, a hand-crafted gadget is used to derive an inapproximability result.
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Chapter 5

An approximation algorithm

for Max Set Splitting

5.1 Introduction

In this chapter, we introduce new approximation algorithms for Max Set Splitting
and Max Not-All-Equal Sat. In the Max Set Splitting problem, a problem instance
consists of subsets of some �nite set. The problem is to partition the elements into
two parts, such that as many subsets as possible are split, i.e., contain elements from
both parts. A restriction of this problem, Max Ek-Set Splitting, where all subsets
have cardinality k, was shown to be NP-complete for any �xed k by Lovász [67].
It has also been shown to be Apx-complete [75]. Obviously, Max 2-Set Splitting
is exactly the Max Cut problem. The best known approximation algorithm for
this problem, described in Chapter 3, has performance guarantee 0:87856 [40].
Furthermore, Max 3-Set Splitting has been shown to be approximable with the same
performance guarantee [55], and for k � 4, Max Ek-Set Splitting is approximable
within 1�21�k [1, 55]; this can be obtained by derandomizing the simple randomized
algorithm. However, the previously best known algorithm for the general Max Set
Splitting problem has a performance guarantee of 0:5.

The Max Not-All-Equal Sat problem, from now on abbreviated Max NAE Sat,
is a variation of Max Sat, where the goal is to maximize the total weight of the
clauses that contain both true and false literals. It has been shown to be Apx-
complete with performance guarantee 0:5 [74]. We can actually view Max NAE
Sat as a generalization of Max Set Splitting, since every instance of the Max Set
Splitting problem is also an instance of Max NAE Sat, namely an instance where
no clause contains any negated literal.

Our approximation algorithm for Max Set Splitting is built upon the ideas of
Crescenzi and Trevisan [26]. We start by solving a semide�nite program obtained
from Goemans and Williamson [40], and then add a probabilistic postprocessing
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40 Chapter 5. An approximation algorithm for Max Set Splitting

step, where the rounded solution to the semide�nite program is perturbed. A
small modi�cation of this algorithm also gives an algorithm for Max NAE Sat. By
formulating the performance guarantee of this combined algorithm as the objective
function of a linear program, we can bound it by simply solving the linear program.
This shows that the combined algorithm has a performance guarantee of 0:72405,
both for Max Set Splitting and Max NAE Sat.

5.2 The algorithms for Max Set Splitting

5.2.1 The relaxation

Let u(Sj) be a function that is 0 if Sj is not split, and at least 1 if Sj is split. Then
we can formulate the Max Set Splitting problem as the integer program

maximize

nX
j=1

wjzj

subject to u(Sj) � zj 8j,
zj 2 f0; 1g 8j.

We now aim to �nd a suitable expression for u(Sj).

De�nition 5.1. For each subset Sj , we let Pj =
�
fi1; i2g : i1 6= i2 ^ i1; i2 2 Sj

	
.

We observe that none of the pairs fi1; i2g 2 Pj are split if Sj is not split, and that
at least jSj j� 1 of the pairs are split if Sj is split. Furthermore, we let yi 2 f�1; 1g
correspond to the element xi 2 S, where xi1 2 S and xi2 2 S belong to the same
part in the partition of S if and only if yi1 = yi2 . This enables us to de�ne u(Sj) as

u(Sj) =
1

jSj j � 1

X
fi1;i2g2Pj

1� yi1yi2
2

:

We now introduce jSj-dimensional unit vectors vi instead of the yi to relax the
integer program to a semide�nite one. Each product yi1yi2 in the de�nition of u(Sj)
is replaced by the inner product hvi1 ; vi2 i. This yields the following semide�nite
program:

maximize

nX
j=1

wjzj

subject to 1
jSjj�1

P
fi1;i2g2Pj

1�hvi1 ;vi2i

2 � zj 8j,
0 � zj � 1 8j,
hvi; vii = 1 8j.

(5.1)

Each vector vi in the solution to the semide�nite program is used to assign a value
in f�1; 1g to the corresponding yi by the following randomized rounding scheme:
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A random hyperplane through the origin is chosen. Denote its normal by r. Then
we set yi = sgnhr; vii. This is the randomized rounding scheme introduced by
Goemans and Williamson for the Max Cut problem. To analyze the performance
of this algorithm we introduce the following indicator random variables:

De�nition 5.2. For each pair fyi1 ; yi2g of variables, the indicator random vari-
able Xi1i2 is de�ned by

Xi1i2 =

(
1 if yi1 6= yi2 ,

0 otherwise.

De�nition 5.3. For each subset Sj , the indicator random variable Zj is de�ned
by

Zj =

(
1 if Sj is split by the algorithm,

0 otherwise.

Our goal now is to show a lower bound on E
�Pn

j=1 wjZj
�
=
Pn

j=1 wj E[Zj ].
To do this, we will use a bound on Pr[Xi1i2 = 1] and a relation between Zj andP

fi1;i2g2Pj
Xi1i2 .

We will only have Xi1i2 = 1 if the vectors vi1 and vi2 end up on opposite sides of
the random hyperplane. The probability of this event is proportional to the angle
between the vectors, and if the vectors are anti-parallel, they will always be on
opposite sides of the hyperplane. Thus Pr[Xi1i2 = 1] = �i1i2=�, where �i1i2 is the
angle between vi1 and vi2 . Goemans and Williamson showed that this probability
can be bounded by

Pr[Xi1i2 = 1] � �
1� hvi1 ; vi2i

2
; (5.2)

where � > 0:87856 [40] (see also the discussion in Section 3.3). This result alone
takes care of any subset Sj of cardinality 2. For larger subsets we use an idea
exploited by Goemans and Williamson [40] for Max Sat:

Lemma 5.4. De�ne �k as

�k =

(
4=k2 if k is even,

4=(k + 1)(k � 1) if k is odd.

Then, for any subset Sj, we have that Zj � �jSjj
P

fi1;i2g2Pj
Xi1i2 .

Proof. For any subset Sj , at most 1=�jSjj of the pairs in Pj are split if Sj is split.
Also, none of the pairs in Pj are split when Sj is not split.

Note that if jSj j = 3, exactly 1=�3 = 2 of the pairs in Pj are split if Sj is
split. This fact is the basis for the 0.87856-approximation algorithm for Max 3-Set
Splitting due to Kann, Lagergren and Panconesi [55].

Putting the pieces together, we obtain the following bound on E[Zj ]:
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Theorem 5.5. For a subset Sj , we have that E[Zj ] � �
jSj jzj, where


jSj j =

(
4(jSj j � 1)=jSj j2 if jSj j is even,
4=(jSj j+ 1) if jSj j is odd.

Proof. By Lemma 5.4 and the linearity of expectation,

E[Zj ] � �jSjj
X

fi1;i2g2Pj

E[Xi1i2 ]:

Now, by the bound of Goemans and Williamson from (5.2), E[Xi1i2 ] � �(1 �
hvi1 ; vi2i)=2, since Xi1i2 is an indicator random variable. Thus,

E[Zj ] � ��jSj j
�
jSj j � 1

� 1

jSj j � 1

X
fi1;i2g2Pj

1� hvi1 ; vi2i
2

:

Applying the �rst inequality in the semide�nite program (5.1) to the right-hand
side, we obtain

E[Zj ] � ��jSj j(jSj j � 1)zj = �
jSj jzj

where the equality follows from the de�nitions of �k and 
k.

As Zj is an indicator variable, Pr[Zj ] = E[Zj ]. We will use this interpretation of
the bound in Section 5.3.

To sum up, we have established that the algorithm produces a solution with an
expected weight of at least

Pn
j=1 �
jSj jwjzj .

5.2.2 Random perturbation

We will in the next section analyze the combined algorithm that runs the following
algorithms and takes the maximum weight obtained as the result.

Algorithm 1. For each xi 2 S, the part in which xi is put is chosen randomly;
both parts have probability 1=2 of being chosen. A simple analysis shows that a
set Sj is split with probability 1� 21�jSjj.

Algorithm 2. The algorithm from Section 5.2.1.

Algorithm 2 has severe problems with large subsets. On the other hand, a large
set is split with high probability if the partition is chosen at random. We thus aim
to combine the bene�ts from those two approaches without su�ering from their
drawbacks. Inspired by techniques introduced by Crescenzi and Trevisan [26], we
construct the following algorithm:
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Algorithm 3. For a given instance, we start by running the algorithm from Sec-
tion 5.2.1. Then, we perturb the obtained answer by letting each xi switch part in
the partition with probability p.

The best value of p will be speci�ed later. Note that if we set p = 0 in Algo-
rithm 3, we get Algorithm 2.

5.3 Analyzing the combined algorithm

As we take the maximum result obtained by any of the above algorithms, we want
to establish a lower bound on the maximum of the contributing algorithms. Usually,
such an analysis has been accomplished by constructing a new combined algorithm,
which chooses as its answer the outcome of the ith contributing algorithm with
probability qi. Then the expected value of this new algorithm is calculated. By
the linearity of expectation, the calculation can be performed separately for subsets
of cardinality k, for each k, thus ensuring that the weakness of one algorithm is
compensated by the strength of the other algorithms. The maximum of the solu-
tions from the contributing algorithms can never be smaller than the expected value
of the combined algorithm, and we therefore obtain a bound on the performance
guarantee. In Section 5.3.2 we will show how to �nd the best set of qi by solving a
linear program.

5.3.1 Separate analyses of the contributing algorithms

Let Ai denote the weight of the solution obtained by Algorithm i above. We now
aim to show lower bounds for Ai.

We �rst focus on �nding a lower bound on A3(p), Algorithm 3 run with switching
probability p. In the analysis we will use the constant N to denote the cut-o� point
between small and large subsets; these two cases will be handled separately. The
value of N will be speci�ed later. The reason why we make this separation is that

we want to be able to solve a linear program with one constraint for each possible
subset size; to keep the number of constraints �nite we have one single constraint
for all subset sizes that are at least N . This is reasonable as the probability that a
subset Sj is split after the perturbation is high when jSj j is large and p > 0.

De�nition 5.6. Let w1 =
P

j : jSjj�N
wj be the total weight of all large subsets.

The bounds obtained will be expressions containing zj . The zj are obtained
from the solution to the semide�nite program (5.1).

De�nition 5.7. Let Bj and Fj denote the events �Sj was split before the pertur-
bation� and �Sj is split after the perturbation� respectively.

Lemma 5.8. Pr[Fj j Bj ] � 1� p(1� p)jSjj�1 � pjSjj�1(1� p).
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Proof. Assume that Sj before the perturbation was split into two sets of sizes ` and
jSj j � ` respectively, where 0 < ` < jSj j. Now

Pr[Fj j Bj ] = 1� p`(1� p)jSjj�` � pjSj j�`(1� p)`

and using elementary calculus and the fact that p � 1=2, it can be shown that this
expression is minimized when ` = 1 or ` = jSj j � 1.

To simplify the notation we make the following de�nition:

De�nition 5.9. For k < N , let

gk(p) = �
k
�
1� p(1� p)k�1 � pk�1(1� p)

�
+ (1� �
k)

�
1� pk � (1� p)k

�
:

Furthermore, let gN (p) = 1� pN � (1� p)N .

Lemma 5.10. Pr[Fj ] � zjgjSjj(p) when jSj j < N .

Proof. Using Lemma 5.8 and Pr[Fj j Bj ] = 1� pjSj j � (1� p)jSj j, we obtain

Pr[Fj ] = Pr[Fj j Bj ] Pr[Bj ] + Pr[Fj j Bj ] Pr[Bj ]

� Pr[Bj ]
�
1� p(1� p)jSj j�1 � pjSjj�1(1� p)

�
+ (1� Pr[Bj ])

�
1� pjSj j � (1� p)jSj j

�
=
�
1� pjSjj � (1� p)jSjj

�
+Pr[Bj ](1� 2p)

�
(1� p)jSj j�1 � pjSjj�1

�
:

But Pr[Bj ] � �
jSj jzj (by Theorem 5.5) and p � 1=2; hence

Pr[Fj ] �
�
1� pjSj j � (1� p)jSj j

�
+ �
jSj jzj(1� 2p)

�
(1� p)jSjj�1 � pjSjj�1

�
= �
jSj jzj

�
1� p(1� p)jSjj�1 � pjSjj�1(1� p)

�
+ (1� �
jSj jzj)

�
1� pjSjj � (1� p)jSj j

�
� zjgjSjj(p);

as zj � 1 implies 1� �
jSj jzj � 1� �
jSj j � (1� �
jSj j)zj .

Lemma 5.11. Pr[Fj ] � gN (p) when jSj j � N .
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Proof. We begin by showing that Pr[Fj j Bj ] � Pr[Fj j Bj ] for p � 0:5:

Pr[Fj j Bj ]� Pr[Fj j Bj ] � pjSjj � pjSjj�1(1� p) + (1� p)jSj j � p(1� p)jSj j�1

= (1� 2p)
�
(1� p)jSjj�1 � pjSjj�1

�
� 0 ;

where the �rst inequality follows from Lemma 5.8 and the second from the fact
that p � 0:5. The lemma now follows from

Pr[Fj ] � Pr[Fj j Bj ] = 1� pjSjj � (1� p)jSjj � gN(p):

We are now able to formulate a bound on A3(p):

Theorem 5.12. A3(p) �
PN�1

k=2

P
j:jSj j=k

wjzjgk(p) + w1gN (p).

Proof. Follows immediately from Lemmas 5.10 and 5.11.

The bounds for A1 and A2 follow from previous work [1, 40, 54, 55]:

A1 �
N�1X
k=2

X
j:jSj j=k

wj(1� 21�k) + w1(1� 21�N)

and

A2 �
N�1X
k=2

X
j:jSj j=k

wj�
kzj :

5.3.2 The worst case for the best algorithm

To obtain an expression for the expected value of the combination of the above
algorithms, we notice that, since 0 � zj � 1, A1 is at least

N�1X
k=2

X
j:jSj j=k

wjzj(1� 21�k) + w1(1� 21�N):

When this is combined with Theorem 5.12, it follows that the expected weight of
the solution from the combined algorithm described in Section 5.2.2 is at least

N�1X
k=2

X
j:jSj j=k

wjzjak + w1aN ;
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where

ak = q�1(1� 21�k) +

MX
j=0

qjgk(j=2M): (5.3)

Here q�1 is the probability that Algorithm 1 is used while qk, 0 � k � M , is
the probability that Algorithm 3 with p = k=2M is used. (Notice that p = 0

corresponds to Algorithm 2.) The parameter M , which is used to discretize the
probabilities p used in Algorithm 3, will be speci�ed below.

To obtain a bound on the performance guarantee, we solve the following linear
program:

maximizeq�1;q0;::: ;qM mink2[2;N ] ak
subject to

P
qj = 1,

qj � 0 8j.
(5.4)

The true contribution from the subsets of cardinality at least N will always be
larger than what is speci�ed by the constraints. Thus, the minimum obtained from
the linear program is a lower bound on the performance guarantee of the algorithm.

To compute the optimum of the linear program, we must select values for M
and N . When M = N = 50, the optimal value of the linear program is at least
0:72405. This means that the algorithm will always deliver a result which is at least

0:72405

0
@N�1X

k=2

X
j:jSj j=k

wjzj + w1

1
A � 0:72405 � opt;

which shows that the algorithm is a 0.72405-approximation algorithm. It turns out
that the only non-zero qk are q11 and q12; both these are approximately 0:5. This
implies that the best performance is obtained by one single algorithm: Hyperplane
rounding is applied to the solution of the relaxation (5.1), and then a perturbation
with p 2 [0:11; 0:12] is performed.

The term aN in (5.3) is much greater than 0:9, given the solution to the linear
program. This means that the answer obtained from the linear program is unaf-
fected by the fact that we underestimate the contribution from sets of cardinality
at least N . If we decrease N below 50 we obtain a slightly lower optimum, while
the optimum does not increase if we increase N .

We also varied M , and observed that there was no substantial improvement
when we increased M above 50.

To solve the linear programs, we used the publicly available package LPsolve by
Michel Berkelaar. The running time forM = N = 50 on a Sun Ultra 1 workstation
was less than one second.

A small modi�cation of the algorithms described above gives a performance
guarantee of 0:72405 also for Max NAE Sat: If a variable xi occurs negated in a
clause, the corresponding vector vi in the corresponding constraint in the semidef-
inite relaxation is replaced by �vi.
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5.4 Lower bounds

The relevant lower bounds for Max Set Splitting and its variations are all derived
for versions in which all sets contain the same number of elements. Håstad [52]
showed a lower bound of 7=8 + " for Max E4-Set Splitting. This lower bound is
tight, as picking a partition at random gives a performance guarantee of 7=8 for
this problem. Håstad in fact showed something stronger: That it is NP-hard to
distinguish between instances where all sets can be split and instances where at
most a fraction 7=8 + " of the sets can be split, for all " > 0. In a related result,
Guruswami [44] showed a lower bound of 21=22+ " for Max E3-Set Splitting and a
lower bound of 27=28+" for satis�able instances of Max E3-Set Splitting. Håstad's
result implies a lower bound of 7=8 + " for Max Set Splitting, and this is the best
lower bound also for Max NAE Sat. These lower bounds can be compared with the
performance guarantee of 0.72405 attained by our algorithm.

5.5 Discussion

The ideas of our approximation algorithm are applicable whenever there exists an
algorithm that performs well on some class of input instances, and the naive prob-
abilistic algorithm, which simply chooses a feasible solution at random, performs
well on some other class of instances. For some problems, it may also be possible
to use some information from the solution obtained by the �rst algorithm to choose
the probabilities in the postprocessing step. The drawback is, as is indeed the case
for Max Set Splitting and Max NAE Sat, that the probabilistic postprocessing can
destroy the good performance of the �rst algorithm.

The approach of expressing the performance of a combination of approximation
algorithms as a linear program is fairly general. Whenever there exist di�erent
approximation algorithms, where some algorithms deliver good approximations for
one class of instances, and other algorithms deliver good approximations for some
other class of instances, our technique may be applicable. A prerequisite of our
analysis is that it is possible to somehow express the performance of the algorithms
in such a way that it can be related to the optimum. For instance, it seems hard
to combine two di�erent algorithms that are based on semide�nite programming.
Our framework is, of course, not restricted to maximization problems; it works on
minimization problems as well.

5.6 Recent results

The results in this chapter �rst appeared in [5]. Zwick later constructed a 0.90872-
approximation algorithm for Max NAE 3-Sat [88]. This algorithm �ts the frame-
work of Section 5.2.2 and the analysis in Section 5.3.2, and a 0.73698-approximation
algorithm for Max NAE Sat follows. Zwick goes on to describe an algorithm for
Max NAE Sat which he is unable to analyze; if a certain conjecture, supported
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by some numerical evidence, is true, a 0.7977-approximation algorithm for Max
NAE Sat follows. All these results of course carry over to the special case Max Set
Splitting.



Chapter 6

On the approximability of Max

k -Horn Sat

6.1 Introduction

One of the canonical problems in the theory of NP-completeness and approxima-
tion algorithms is the Max Sat problem. The best approximation algorithm for
this problem is due to Asano and Williamson [17] and has performance guarantee
approximately 0.7846. Various restricted versions of the Max Sat problem have also
been considered. Several versions in which the number of variables in each clause
is �xed have been extensively studied. For the Max 2-Sat problem, Feige and Goe-
mans [31] constructed a 0.93109-approximation algorithm based on a semide�nite
programming relaxation and pre-rounding rotations. The best lower bound for this
problem is 21=22 + "; this bound follows when the non-approximability results of
Håstad [52] are combined with the gadget of Bellare, Goldreich and Sudan [21]
(later proven optimal by Trevisan et al. [81]). For the Max E3-Sat problem, the
naive randomized algorithm, with performance guarantee 7=8, was shown to be the
best possible by Håstad [52]. Karlo� and Zwick used semide�nite programming to
construct a 7=8-approximation algorithm also for the generalization Max 3-Sat [59].

Schaefer [77] categorized the decision versions of boolean satis�ability problems.
Somewhat surprisingly, it turns out that all decision problems of the form SAT(F)
are either in P or NP-complete and, unless P =NP, the only such problems that
can be solved in polynomial time are 2-Sat, Horn Sat and Lin mod 2. Here SAT(F)
is the decision problem whether a collection of boolean constraints from the family
F can all be simultaneously satis�ed. In 2-Sat, each constraint is the disjunction
of two literals, in Lin mod 2, each constraint is the exclusive OR of one or more
literals, and in Horn Sat, each constraint is the disjunction of one or more literals,
at most one of which is a negated variable.
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The approximability properties of Max 2-Sat have been extensively studied,
the best known results are summarized above. The Max Ek-Lin mod 2 problem
was recently considered by Håstad [52], who showed that achieving a performance
guarantee of 1=2+" isNP-hard. This result is tight as picking a variable assignment
at random satis�es half the equations on average.

The maximization version of Horn Sat, the third decision problem classi�ed
as �easy� by Schaefer, has been subject to much less study, in spite of it being a
relatively natural problem. In this chapter we will investigate the approximability
properties of Max Horn Sat when restricted to instances where there is a bound on
the number of literals in each clause, considering both lower and upper bounds.

Khanna, Sudan and Williamson [65] performed a categorization of maximization
versions of constraint satisfaction problems. An implication of their results is that
Max Horn Sat is Max-SNP-hard. The only other result on the approximability
of the Max Horn Sat problem that we are aware of is due to Zwick [87]. He
considered the robustness of approximation algorithms for some problems, and one
of his results was that if it is possible to satisfy a fraction 1� " of the clauses in a
Max Horn Sat instance, then there exists a polynomial-time algorithm that �nds
an assignment which satis�es 1� 8 log log 1

"
= log 1

"
of the clauses.

6.2 An approximation algorithm for Max 3-Horn

Sat

6.2.1 Discussion

Max 3-Horn Sat is a special case of Max 3-Sat, so the 7/8-approximation algorithm
by Karlo� and Zwick [59] has the same performance guarantee also for Max 3-Horn
Sat. Lacking dedicated approximation algorithms for Max 3-Horn Sat, this is the
best known approximation algorithm also for this problem.

We will base our approximation algorithm for Max 3-Horn Sat on Karlo� and
Zwick's canonical semide�nite relaxation of the integer program for Max 3-Sat:

maximize
X
i

wizi +
X
i;j

wijzij +
X
i;j;k

wijkzijk

subject to zi � relax(v0; vi) 8i,
zij � relax(v0; vi; vj) 8i; j,
zijk � relax(v0; vi; vj ; vk) 8i; j; k,
vi 2 Sn 8i,
vn+i = �vi 1 � i � n.

(6.1)

Indices 1; : : : ; n correspond to the boolean variables present in the Max 3-Sat in-
stance, while indices n+1; : : : ; 2n correspond to their negations. The variables zi,
zij and zijk represent the degrees to which clauses of length one, two and three
respectively are satis�ed, and the wi, wij and wijk are the corresponding weights.
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Weights equal to zero indicate clauses that are not present in the instance. The
function relax holds the constraints that the solution must satisfy. For clauses
containing one or two variables, it essentially reduces to Goemans-Williamson's
relaxation:

relax(v0; vi) =
1� hv0; vii

2
;

relax(v0; vi; vj) = min

(
3� hv0; vii � hv0; vji � hvi; vji

4
; 1

)
:

For clauses of length three, the constraints are more complicated:

relax(v0; vi; vj ; vk) = min

(
4� hv0 + vi; vj + vki

4
;
4� hv0 + vj ; vi + vki

4
;

4� hv0 + vk; vi + vji
4

; 1

)
:

(6.2)

Karlo� and Zwick used the randomized rounding scheme introduced by Goe-
mans and Williamson [40] for the Max 2-Sat problem (see Chapter 3). They
achieved the performance guarantee 7=8, which is the best possible for this problem
in the light of the result by Håstad [52]: It is NP-hard to approximate Max E3-Sat
within 7=8 + " even when restricted to satis�able instances. It is easy to analyze
the performance of the rounding scheme for clauses of length one and two, but for
clauses of length three this becomes considerably more di�cult. A clause will be
satis�ed after the randomized rounding if at least one of the literals is true, which
corresponds to at least one of vi, vj and vk not ending up on the same side of the
random hyperplane as v0. We therefore let

prob(v0; v1; : : : ; vk) = Pr
�
fv0; v1; : : : ; vkg are separated by the

random hyperplane with normal rg
�
:

Analogously to the derivation in Section 3.3, the performance guarantee for clauses
of length three is

min
v0;vi;vj;vk2Sn

prob(v0; vi; vj ; vk)

relax(v0; vi; vj ; vk)
:

We have an explicit formula for the denominator, (6.2), but for the numerator the
most explicit expression known is

prob(v0; vi; vj ; vk) = 1� volume
�
tetra(v0; vi; vj ; vk)

�
�2

where tetra(v0; vi; vj ; vk) is the spherical tetrahedron de�ned as

tetra(v0; vi; vj ; vk) =
�
r 2 S3 j hv0; ri � 0; hvi; ri � 0; hvj ; ri � 0; hvk; ri � 0

	
:
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There is no closed form for the volume function of spherical tetrahedra, and there
is reason to believe that none exists as it is related to the dilogarithm function [63].
One therefore has to resort to numerical integration to evaluate it. Several di�erent
integrals representing the volume function have been proposed [23, 24, 49, 78]. The
most recent is also the most useful for the purposes of numerical integration. It is
due to Hsiang [49] and reduces the problem of evaluating the volume function to
calculating a complicated one-dimensional integral.

6.2.2 A new rounding scheme

Let us begin by revisiting the approximation algorithm of Feige and Goemans for
Max 2-Sat [31] (described in Chapter 3). When restricted to clauses of length
at most two, the relaxation (6.1) above is equivalent to Feige-Goemans' relax-
ation (3.8). This means that the only di�erence in how such clauses are handled
is the rounding scheme. Feige-Goemans' pre-rounding rotations achieve a per-
formance guarantee of 0.93109. This is considerably more than the 0.87856 that
Karlo�-Zwick's algorithm achieves for clauses of length at most two, but on the
other hand there is no point in applying pre-rounding rotations to the optimal so-
lution of (6.1) as an optimal approximation result is achieved for Max 3-Sat anyway.

When we turn to Max 3-Horn Sat, the bound in Theorem 4.5 does not apply.
A pre-rounding rotation can improve the performance for clauses of length two;
if we can �nd one that also provides improvement for the two possible types of
3-Horn clauses, x_ y _ z and x_ y _:z, then we can approximate the Max 3-Horn
Sat problem better than the 7=8 achieved by Karlo�-Zwick's general Max 3-Sat
algorithm.

The pre-rounding rotations considered so far, see e.g. [45, 59, 86], all have the
symmetry property f(� � �) = � � f(�) to ensure that negated and unnegated
variables are treated in the same way. When we consider the Max 3-Horn Sat
problem, it is no longer obvious that such a symmetry is bene�cial. This is because
of the lack of symmetry of Max 3-Horn Sat instances � a clause of length three
contains at most one negated variable. The worst case for Karlo�-Zwick's Max
3-Sat algorithm is when the four vectors v0; vi; vj ; vk are pairwise orthogonal. For
such a con�guration it is easy to see that relax(v0; vi; vj ; vk) = 1 and, looking at
Hsiang's formulas [49], prob(v0; vi; vj ; vk) = 7=8. It is clear that the pre-rounding
functions used by Feige and Goemans can never improve on this con�guration as
the symmetry property implies that f(�=2) = �=2. This means that the vectors
vi, vj and vk are not a�ected by the rotation. Let us now ignore the symmetry
property and suppose that f(�=2) = �=2 + " for some small " > 0. Those among
vi, vj and vk that correspond to unnegated variables will now be rounded away
from v0, and the probability that such literals are satis�ed after the randomized
rounding is greater than 1=2. The drawback is of course that those corresponding to
negated variables are rounded towards v0, making the probability of the literal being
satis�ed less than 1=2. For a Max 3-Horn Sat clause containing three variables, the
probability of it being satis�ed should nevertheless increase as there are at least two
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literals for which the probability of being true increases, and at most one for which
the probability decreases. This indicates that it might prove fruitful to apply pre-
rounding rotations without the symmetry property in order to construct a better
approximation algorithm for Max 3-Horn Sat.

Finding a good rotation function is a non-trivial optimization problem. Like
Halperin and Zwick [45], we restricted the attention to continuous piecewise linear
functions f : [0; �] ! [0; �] such that f(0) = 0 and f(�) = �. A relatively small
number of bends, typically between 5 and 15, was used when searching for good
rotation functions. For a particular function f , the performance was determined by
discretizing the six angles that describe a con�guration of v0, vi, vj and vk and nu-
merically calculating prob(v0; vi; vj ; vk) using Hsiang's formula. (The performance
for clauses containing one or two variables was also determined, but this was con-
siderably easier as no numerical integration was necessary in these cases.) Each
angle was divided into up to 60 steps.

To prune the angle space, only con�gurations satisfying the Feige-Goemans
inequalities

�hv0; vii+ hv0; vji+ hvi; vji � 1

+hv0; vii � hv0; vji+ hvi; vji � 1

+hv0; vii+ hv0; vji � hvi; vji � 1

�hv0; vii � hv0; vji � hvi; vji � 1

�hv0; vii+ hv0; vki+ hvi; vki � 1

+hv0; vii � hv0; vki+ hvi; vki � 1

+hv0; vii+ hv0; vki � hvi; vki � 1

�hv0; vii � hv0; vki � hvi; vki � 1

�hv0; vji+ hv0; vki+ hvj ; vki � 1

+hv0; vji � hv0; vki+ hvj ; vki � 1

+hv0; vji+ hv0; vki � hvj ; vki � 1

�hv0; vji � hv0; vki � hvj ; vki � 1

were considered. These inequalities are part of the polytope that de�nes Max 3-Sat
(see [59, 86] for a discussion on canonical relaxations) and can therefore be included
in the relaxation. Another way to see that they can be safely included is that they
are valid in an integral solution, i.e., when all vi are �1.

The best function discovered in the search for good rotation functions was a
rather gentle rotation function; jf(�) � �j is at most 0.12. This is attained for
� = �=2, and just as expected it pays o� to rotate all such vectors away from
v0. The function is depicted in Figure 6.1 and tabulated in Table 6.1. One can
also note that it shares some properties with Feige-Goemans rotation function (see
Figure 3.1): For angles in the neighborhood of 0.81 and 2.33, the worst cases for
Goemans-Williamson's Max 2-Sat algorithm, it rotates the angles towards 0 and �

respectively. Although this is not the worst-case con�guration for Karlo�-Zwick's
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Max 3-Sat algorithm, such rotations are still necessary as it otherwise would be
impossible to achieve a performance guarantee larger than that of Goemans and
Williamson's Max 2-Sat algorithm, 0.87856.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 6.1. Rotation function for Max 3-Horn Sat.

� f(�) � f(�)

0 0 1.82 1.89
0.56 0.56 2.08 2.13
0.81 0.76 2.33 2.36
1.06 1.07 2.58 2.58
1.32 1.405 � �

�=2 1.69

Table 6.1. Rotation function for Max 3-Horn Sat.

Conjecture 6.1. The performance guarantee of the Max 3-Horn Sat algorithm that
solves the relaxation (6.1), rotates the vectors according to the function tabulated
in Table 6.1, and then performs hyperplane rounding, is 0.882.

This result rests upon numerical evidence rather than an analytical proof.
We veri�ed that the result holds for all discretizations of the angle space into
206; 216; : : : ; 596; 606 points. Finding an analytical proof by hand seems out of the
question; it might be possible to generate a proof with the help of a computer al-
gebra system. Even if this could be done, it is doubtful how much insight such a
proof would give � it would probably be very long, tedious and hard to understand.
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Karlo� and Zwick [59] were initially not able to prove that their algorithm gives
a performance guarantee of 7=8 for Max 3-Sat, but were later able to construct
a (complicated) proof. The situation looks even worse for Max 3-Horn Sat as a
rotation function is involved. The recent results by Halperin and Zwick for Max
4-Sat [45] are also based on numerical evidence.

The above Max 3-Horn Sat algorithm gives a rather small improvement in the
performance guarantee over the Max 3-Sat algorithm by Karlo� and Zwick, 0.882 vs
0.875. We therefore searched for more complicated rounding schemes, but without
success Halperin and Zwick report similar experiences in the full version of [45]; they
studied some variations of Max Sat, and in instances not containing any clauses
of length more than three, the best rounding schemes were plain pre-rounding
rotations combined with hyperplane rounding. Picking a random truth assignment
gives a performance guarantee of 0.875 for clauses containing exactly three variables,
and this indicates that rounding schemes that use more randomness can hurt the
performance. The worst-case con�gurations for Goemans-Williamson's Max 2-Sat
algorithm also come into play as the performance guarantee of that algorithm is
only 0.87856. For the current 0.882-approximation algorithm there are several
di�erent con�gurations for which the worst case is attained. Some of these are
low-dimensional con�gurations, close to the worst-case con�gurations for the Max
2-Sat algorithms, and some are con�gurations for which v0, vi, vj and vk are almost
orthogonal.

For Max 2-Horn Sat, using asymmetric rotation functions did not improve on the
0.93109-approximation algorithm of Feige and Goemans for Max 2-Sat. For Max 4-
Horn Sat, the rotation function in Table 6.1 gives a performance guarantee of about
0.86, signi�cantly worse than the 0.8721-approximation algorithm for general Max
4-Sat by Halperin and Zwick. They used a more complicated rounding scheme, and
this might be necessary also for Max 4-Horn Sat.

6.3 Lower bounds

For some problems in the Max k-Horn Sat family, we prove lower bounds using
the methodology of Trevisan et al. [81] (see Section 4.2). The constraint family
Max k-Horn Sat is hereditary for any k, and we have therefore been able to �nd
optimal gadgets reducing PC0 and PC1 to Max 2-Horn Sat, Max 3-Horn Sat and
Max 4-Horn Sat.

The performances of the new gadgets and the lower bounds they give are listed
in Section 6.3.1. A discussion on the adaptations of the methodology of Trevisan
et al. [81] that were necessary for the LPs to become tractable follows in Sec-
tion 6.3.2. The gadgets obtained are listed in Section 6.3.3.

6.3.1 New inapproximability results

Lemma 6.2. There exists a 13-gadget reducing PC0 to 2-Horn and it is optimal.
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Lemma 6.3. There exists a 12-gadget reducing PC1 to 2-Horn and it is optimal.

Both these gadgets contain four auxiliary variables, which is the minimal number
of auxiliary variables for any optimal such gadget.

Theorem 6.4. For all " > 0, it is NP-hard to approximate Max 2-Horn Sat within
24=25+ ".

Proof. Follows from Lemmas 6.2 and 6.3 and Theorem 4.7.

This can be compared with the lower bound of 21=22 + " for the Max 2-Sat
problem.

Lemma 6.5. There exists a 7-gadget reducing PC0 to 3-Horn and it is optimal
and strict.

Lemma 6.6. There exists a 7-gadget reducing PC1 to 3-Horn and it is optimal.

The PC0-gadget does not use any auxiliary variable while the PC1-gadget uses
three auxiliary variables.

Theorem 6.7. For all " > 0, it is NP-hard to approximate Max 3-Horn Sat within
13=14+ ".

Proof. Follows from Lemmas 6.5 and 6.6 and Theorem 4.7.

The corresponding lower bound for Max 3-Sat is 7=8 + ".

Lemma 6.8. There exists a 7-gadget reducing PC0 to 4-Horn and it is optimal
and strict.

Lemma 6.9. There exists a 7-gadget reducing PC1 to 4-Horn and it is optimal.

This implies that we cannot get a stronger lower bound for Max 4-Horn Sat
than Theorem 6.7 by considering gadget reductions from the PC family.

6.3.2 Methodology

We are interested in gadgets from PC0 and PC1, and both these constraint functions
have 4 satisfying assignments. By Theorem 4.11, we need only consider gadgets
containing at most 24 � 3 = 13 auxiliary variables. This can be reduced to 11
by observing that setting a variable identically false or identically true in a Horn
clause results in another Horn clause. On the other hand, Max k-Horn Sat is not
symmetric with respect to negation as a Horn clause cannot contain more than
one negated variable. With this symmetry, 24�1 � 3 = 5 auxiliary variables would
su�ce, but it is unfortunately not present in the target functions we consider.
This leaves us with 3 primary and 11 auxiliary variables for all the gadgets we
consider. The LP (4.1) will therefore contain 214+4 = 16388 constraints, while the
number of variables depends on what member of the Max k-Horn Sat family we
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choose as target for the reduction. By counting the number of Horn clauses that
can be formed using 14 di�erent variables, we can calculate the sizes of the LPs
we have to solve in order to �nd optimal gadgets from PCi to Max 2-Horn Sat,
Max 3-Horn Sat and Max 4-Horn Sat. They are listed in Table 6.2. The number

Problem Variables Inequalities

Max 2-Horn Sat 302 16388
Max 3-Horn Sat 1758 16388
Max 4-Horn Sat 6763 16388

Table 6.2. Dimensions of the LPs for �nding optimal gadgets.

of inequalities is much larger than the number of variables for all the LPs, so it
turned out to be easier to solve the dual LPs rather than the original LPs. We
tried to use the software package LPsolve to solve the LPs, but only succeeded in
solving the LPs corresponding to the two Max 2-Horn Sat gadgets � the others
were too large for our hardware/software con�guration. What makes these LPs
cumbersome is that almost all elements in the constraint matrices are non-zero. In
most applications where large LPs are solved, the constraint matrices are extremely
sparse, thus greatly simplifying the task for the LP solver. Furthermore, many
LP packages, including LPsolve, are optimized for sparse LPs, resulting in bad
memory management when applied to dense LPs.

To overcome this di�culty, we considered relaxations of (4.1). Most optimal
gadget reductions from PC0 and PC1 to target families of interest contain a small
number of auxiliary variables, usually much less than the upper bound provided
by Theorem 4.11. We can exploit this fact by only considering a subset B of the
possible assignments to the auxiliary variables b in the LP (4.1). Consider the
relaxation

minimize �

subject to (8a : f(a) = 1) :
Pm

j=1 wjCj(a; bM (a)) = �,

(8a : f(a) = 1)(8b 2 B) :
Pm

j=1 wjCj(a; b) � �,

(8a : f(a) = 0)(8b 2 B) :
Pm

j=1 wjCj(a; b) � �� 1,

wi � 0 8i.

(6.3)

Let v be the number of auxiliary variables that we guess will be present in the
optimal gadget. Then we choose B such that for each of the

�
11
v

�
v-subsets of the

auxiliary variables, all 2v assignments occur at least once in B. We also want B to
be small for the relaxation to be signi�cantly faster to solve than the original LP. To
accomplish this, we formulated the problem of �nding a minimal B as an instance
of the Min Set Cover problem and applied the well-known greedy approximation
algorithm (see e.g. [47]). This approach was good enough for �nding small sets B,
and we did not look into more sophisticated techniques.

By introducing the parameter v in the construction of B, we get a nice pa-
rameterization of the search for gadgets, as the size of the relaxed LP (6.3) is an
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increasing function of v. We therefore generated and solved the LPs for di�erent
values of v. For each value of v, the optimal solution to (6.3) was inserted into the
original LP (4.1) and checked for feasibility � when the solution to the relaxed
LP (6.3) is feasible for the original LP (4.1), it must, being a relaxation, also be
optimal. Using this technique, we could �nd provably optimal gadget reductions
by solving LPs much smaller than the bounds from Table 6.2. The actual sizes of
the LPs that resulted in optimal gadgets are listed in Table 6.3.

Gadget v Variables Inequalities

PC0 ! Max 2-Horn Sat 7 302 2812
PC1 ! Max 2-Horn Sat 7 302 2812
PC0 ! Max 3-Horn Sat 6 1758 1508
PC1 ! Max 3-Horn Sat 5 1758 708
PC0 ! Max 4-Horn Sat 6 6763 1508
PC1 ! Max 4-Horn Sat 6 6763 1508

Table 6.3. Dimensions of relaxations solved for �nding optimal gadgets.

It turns out that the value of v for which the solution to the relaxation (6.3)
becomes feasible for (4.1) is between 5 and 7 for all gadgets whereas the number
of auxiliary variables is between 0 and 4. The intuition that v corresponds to the
number of auxiliary variables is therefore slightly misleading; a larger value of v is
necessary in all cases.

We also veri�ed that the gadgets contain a minimal number of auxiliary vari-
ables. This can be achieved by considering restricted witness matrices: Suppose
we want to show that there does not exist any gadget with less than 4 auxiliary
variables for some reduction. Then it su�ces to solve

�
11
3

�
= 165 di�erent LPs to

verify this; one for each way to choose 3 out of the 11 columns for auxiliary variables
in the canonical witness matrix. These LPs are very small and can be solved in less
than a second each.

6.3.3 New gadgets

The new gadgets from PC0 and PC1 to Max 2-Horn Sat and Max 3-Horn Sat are
listed in Tables 6.4�6.7. Notation: The xi are the variables of the constraint being
reduced, while the yi are auxiliary variables, private for each group of constraints
from the target family.
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Weight Constraint Weight Constraint

2 :x3 1 x1 _ :y4
1 :y1 1 x2 _ :y1
1 :y3 1 x2 _ :y4
1 x2 _ y2 1 :x1 _ y1
1 x2 _ y3 1 :x1 _ y2
1 x3 _ y1 1 :x3 _ y2
1 x3 _ y3 1 :x3 _ y4
1 x1 _ :y3

Table 6.4. The 13-gadget reducing the PC0 constraint :(x1 � x2 � x3) to a set of

Max 2-Horn Sat constraints.

Weight Constraint Weight Constraint

1 :x1 1 x2 _ :y2
1 :x3 1 x3 _ :y4
1 x1 _ y4 1 :x1 _ y1
1 x2 _ y3 1 :x1 _ y2
1 x3 _ y2 1 :x2 _ y4
1 x1 _ :y3 1 :x3 _ y1
1 x2 _ :y1 1 :x3 _ y3

Table 6.5. The 12-gadget reducing the PC1 constraint x1�x2�x3 to a set of Max

2-Horn Sat constraints.

Weight Constraint Weight Constraint

1 :x1 2 x1 _ x3
1 :x2 2 :x1 _ x2 _ x3
1 :x3 2 x1 _ x2 _ :x3

Table 6.6. The 7-gadget reducing the PC0 constraint :(x1 � x2 � x3) to a set of

Max 3-Horn Sat constraints.
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Weight Constraint Weight Constraint

1 x1 _ x2 _ x3 0.5 x2 _ y2
0.5 :x1 0.5 x3 _ y1
0.5 :x2 0.5 x1 _ :x2 _ y1
0.5 :x3 0.5 x1 _ :x3 _ y2
0.5 :y1 0.5 x2 _ :x3 _ y3
0.5 :y2 0.5 x1 _ x2 _ :y1
0.5 :y3 0.5 x1 _ x3 _ :y2
0.5 x1 _ y3 0.5 x2 _ x3 _ :y3

Table 6.7. The 7-gadget reducing the PC1 constraint x1 � x2 � x3 to a set of Max

3-Horn Sat constraints.



Chapter 7

Approximating linear

equations mod p

7.1 Introduction

Systems of linear equations mod p is a basic and very general combinatorial problem,
which exhibits the following property: The naive randomized algorithm that chooses
a solution at random approximates the problem within 1=p. Recently, Håstad [52]
studied systems of linear equations mod pwith exactly k unknowns in each equation,
and showed that it is NP-hard to approximate the problem within 1=p+ " for all
" > 0, all p � 2, and all k � 3.

In this chapter we study the only interesting remaining cases, systems of linear
equations mod p with at most, or exactly, two unknowns in each equation. When
p = 2, this problem has been studied previously, but for p > 2 not much is known.
We use semide�nite programming combined with randomized rounding to show

that for both Max 2-Lin mod p and Max E2-Lin mod p it is possible to do better
than the naive randomized heuristic. Speci�cally, we show that there exists, for
all p, a randomized polynomial time algorithm that approximates both problems
within 1=(1��(p))p, where �(p) > 0 for all p. On the negative side, we show that it
is NP-hard to approximate Max E2-Lin mod p within some constant performance
guarantee, independent of p.

As described in Chapter 3, the usual way to use semide�nite programming
in approximation algorithms is to formulate the problem as an integer program,
and then relax this program to a semide�nite one. In order to approximate Max
p-Cut, Frieze and Jerrum [36] instead associated a vector with each vertex, and
added constraints enforcing the vectors to have certain properties. To re�ne their
technique, we let each variable in the system of linear equations be represented
by a constellation of several vectors. By adding suitably chosen constraints to the

61
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semide�nite program, we make sure that the solution to the semide�nite program
has the same kind of symmetries as the solution to the original problem.

Our approach is in some sense dual to that of Frieze and Jerrum. We use many
vectors to represent each variable and one random vector in the rounding; they
use one vector for each variable and many random vectors in the rounding. Our
algorithm can be used also for Max p-Cut, since Max p-Cut is a special case of Max
E2-Lin mod p. It is not clear a priori how our method and the method of Frieze and
Jerrum relate to each other. We elucidate on this and show that the performance
guarantee of our algorithm obtained by only considering local con�gurations, the
usual method of analysis, is not better than that of Frieze and Jerrum's algorithm.

7.2 Preliminaries

From now on, p always denotes a prime, although most of our results generalize to
composite p. Regarding the lower bound, it is easy to see that if p is a prime factor
in m we can convert a Max E2-Lin mod p instance to an equivalent Max E2-Lin
mod m instance by multiplying each equation with m=p. Since we show a constant
lower bound, independent of p, the lower bound generalizes. We will show later
how to generalize our upper bounds to composite p.

We now show that a simple randomized heuristic, which can be derandomized
by the method of conditional expectation, for Max 2-Lin mod m has performance
guarantee 1=m. Since an equation axi � bxi0 = c mod m can only be satis�ed
if gcd(a; b;m) divides c, we can assume that all equations have this property; it
su�ces to satisfy a fraction 1=m of the satis�able equations.

Algorithm 4. Takes as input an instance of Max 2-Lin mod m, where m =

p�1

1 � � � p�kk , with variables x1; : : : ; xn. Outputs an assignment with expected weight
at least a fraction 1=m of the weight of the satis�able equations in the instance.
The algorithm guesses, for each j, the values of xi mod p

�j
j uniformly at random.

By the Chinese remainder theorem, xi is determined uniquely by the values of
xi mod p

�j
j for j = 1; : : : ; k.

Lemma 7.1. If we guess an assignment to the xi mod p�ss uniformly at random, a
satis�able equation of the form axi � bxi0 = c mod p�ss is satis�ed with probability
at least 1=p�ss .

Proof. If either a or b is a unit mod p�ss , the proof is trivial. Otherwise, gcd(a; b) =
pt for some t � 1, and in this case we can divide a, b and c by pt to produce an
equivalent equation

a

pt
xi �

b

pt
xi0 =

c

pt
mod p�s�ts :

(Note that pt j c for the equation to be satis�able.) This equation will be satis�ed
with probability greater than 1=p�ss .
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Corollary 7.2. There exists, for all m � 2, a deterministic algorithm for Max
2-Lin mod m with performance guarantee 1=m.

Proof. By Lemma 7.1, Algorithm 4 satis�es any satis�able equation with proba-
bility at least 1=m. With this in mind, the corollary follows from the facts that
the optimum of an instance is at most the weight of the satis�able equations, and
that the algorithm can be derandomized by the standard technique of conditional
expectation. In this method one determines the values of the variables one by one
making sure that the expected number of satis�ed equation, conditioned upon the
choices made so far, never decreases. We omit the details.

7.2.1 Earlier work

In Chapter 3, the approximation algorithm for Max Cut due to Goemans and
Williamson [40] was presented and analyzed. A generalization of Max Cut is Max
p-Cut, where the vertices of a graph are to be partitioned into p parts instead of
two. In their approximation algorithm for Max p-Cut, Frieze and Jerrum [36] face
a complication similar to ours: How to represent in a suitable way variables that
can take one of p values. To do this, each vertex is represented by a vector which
is one of the p vertices of a regular (p� 1)-simplex centered at the origin in Rp�1.
If the vertices of the simplex are fa1; a2; : : : ; apg, the Max p-Cut problem can be
formulated as

maximize
p� 1

p

X
i<i0

wii0
�
1� hyi; yi0i

�
subject to yi 2 fa1; a2; : : : ; apg for all i:

The partition is formed according to Vj = fi j yi = ajg.
The natural way to relax this program to a semide�nite one is to use vectors vi

that are not constrained to the vertices of a simplex:

maximize
p� 1

p

X
i<i0

wii0
�
1� hvi; vi0i

�
subject to hvi; vii = 1 for all i,

hvi; vi0 i � �1
p�1

for all i 6= i0;

vi 2 Rn for all i.

(7.1)

To obtain a partition of the graph from the solution to the semide�nite program,
the algorithm selects p random vectors r1; r2; : : : ; rp uniformly distributed on the
unit sphere in Rn, and sets

Vj =
�
i j hvi; rji � hvi; rj0 i for all j0 6= j

	
:

This is not completely accurate as it is possible for Vj \ Vj0 to be non-empty for
j 6= j0, but this event has probability 0 and it is easy to avoid this problem by
forming the partition in a more complicated way.

When p = 2 this algorithm is equivalent to the Max Cut algorithm of Goemans
and Williamson.
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7.2.2 Our construction

Our goal is to generalize the algorithm of Goemans and Williamson to Max 2-
Lin mod p. We �rst construct an approximation algorithm for systems of linear
equations where the equations are of the form xi � xi0 = c.

A problem with applying the approach of Frieze and Jerrum is that it has no
�metric� information, it can only express equality and non-equality. The reason for
this is that the algorithm chooses the random vectors without any linear structure.
Our way of achieving a linear structure is through representing each variable xi
by a constellation of p vectors, fui0; ui1; : : : ; uip�1g and rounding the semide�nite
solution using one random vector r. The partition would then be constructed as

Vj =
�
xi j huij ; ri � huij0 ; ri for all j0 6= j

	
;

and all variables in Vj are assigned the value �j. We create a consistent linear
structure of these constellations by requiring that for all i; i0 and all j; j0; k,

huij ; ui
0

j+ki = huij0 ; ui
0

j0+ki:

(The subscripts are interpreted mod p.) If we denote by wii0c the weight of the
equation xi � xi0 = c, we can thus write our restricted version of the Max E2-Lin
mod p problem as the following semide�nite program:

maximize
X
i;i0;c

wii0c

0
@p� 1

p2

p�1X
j=0

huij ; ui
0

j+ci+
1

p

1
A

subject to huij ; uiji = 1 8i; j,
huij ; uij0i = �1

p�1 8i8j 6= j0,

huij ; ui
0

j0i 2 f1; �1
p�1
g 8i 6= i08j; j0,

huij ; ui
0

j+ki = huij0 ; ui
0

j0+ki 8i; i0; j; j0; k.

(7.2)

To simplify the terminology, we will now de�ne formally the constellation of vectors
associated with each variable in the above program.

De�nition 7.3. For each variable xi 2 Zp we construct an object henceforth called
a simplicial porcupine in the following way:

We take p vectors fuijgp�1
j=0 and add the following constraints to the semide�nite

program:

huij ; uiki =
(
1 when j = k,
�1
p�1 otherwise,

(7.3a)

for all i and all j; k 2 Zp,

huij ; ui
0

j+ki = huij0 ; ui
0

j0+ki (7.3b)
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for all i; i0 and all j; j0; k 2 Zp, and

huij ; ui
0

k i �
�1
p� 1

(7.3c)

for all i; i0 and all j; k 2 Zp.

We can now relax the program (7.2) to a semide�nite one, and then apply the
rounding procedure described above. For completeness, we write out the semide�-
nite relaxation:

maximize
X
i;i0;c

wii0c

0
@p� 1

p2

p�1X
j=0

huij ; ui
0

j+ci+
1

p

1
A

subject to huij ; uiji = 1 8i; j,
huij ; uij0i = �1

p�1 8i8j 6= j0,

huij ; ui
0

j0i � �1
p�1

8i 6= i08j; j0,
huij ; ui

0

j+ki = huij0 ; ui
0

j0+ki 8i; i0; j; j0; k.

(7.4)

When we are to analyze the rounding procedure, we want to study the inner prod-
ucts huij ; ri. Unfortunately, these random variables are not independent for a �xed i,
and this complicates the analysis. We would obtain a simpler analysis if the vec-
tors corresponding to a variable were orthogonal, since then the corresponding inner
products would be independent. It is easy to construct such a semide�nite program.
All constraints change accordingly, and for each equation the terms

1

p

p�1X
j=0

hvij ; vi
0

j+ci (7.5)

are included in the objective function. Such a construction gives the semide�nite
program

maximize
X
i;i0;c

wii0c

0
@1

p

p�1X
j=0

hvij ; vi
0

j+ci

1
A

subject to hvij ; viji = 1 8i; j,
hvij ; vij0 i = 0 8i8j 6= j0,

hvij ; vi
0

j0 i � 0 8i 6= i08j; j0,
hvij ; vi

0

j+ki = hvij0 ; vi
0

j0+ki 8i; i0; j; j0; k.

(7.6)

We use the same rounding procedure in both cases: xi is assigned the value �j if
hvij ; ri � hvij0 ; ri for all j0 6= j. It is this program we will analyze in Section 7.3.

De�nition 7.4. For each variable xi 2 Zp we construct an object henceforth called
an orthogonal porcupine in the following way:
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We take p vectors fvijgp�1
j=0 and add the following constraints to the semide�nite

program:

hvij ; viki =
(
1 when j = k,

0 otherwise,
(7.7a)

for all i and all j; k 2 Zp,

hvij ; vi
0

j+ki = hvij0 ; vi
0

j0+ki (7.7b)

for all i; i0 and all j; j0; k 2 Zp, and

hvij ; vi
0

k i � 0 for all i; i0 and all j; k 2 Zp. (7.7c)

When no confusion can arise, we will simply call the above object a porcupine.

In fact, the simplicial and orthogonal formulations are equally good, in terms
of the quality of the relaxation.

Theorem 7.5. For Max E2-Lin mod p, the simplicial and orthogonal porcupine
models achieve the same performance.

Proof. An orthogonal porcupine fvijgp�1
j=0 can be transformed into a simplicial por-

cupine fuijgp�1
j=0 by letting

bi =
1

p

p�1X
k=0

vik ; (7.8)

uij =

r
p

p� 1

�
vij � bi

�
: (7.9)

With this transformation, the constraints (7.7b) imply the constraints (7.3b). Also,
the constraints (7.7b) and (7.7c) together imply the constraints (7.3c). To see this,
it is enough to show that

�1=p � hvij � bi; vi
0

j0 � bi
0i

= hvij ; vi
0

j0 i � hvij ; bi
0i � hbi; vi0j0 i+ hbi; bi

0i:

Now note that the constraints (7.7b) imply that

hvij ; bi
0i = hbi; vi0j0 i = hbi; bi

0i;

and thus

hvij � bi; vi
0

j0 � bi
0i = hvij ; vi

0

j0i � hbi; bi
0i � �kbik kbi0k = �1=p:
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Consider the contribution to the objective function from the equation xi � xi0 = c

in the two models. The simplicial porcupine gives

p� 1

p2

p�1X
j=0

huij ; ui
0

j+ci+
1

p
=

1

p

p�1X
j=0

hvij ; vi
0

j+ci �
1

p2


p�1X
k=0

vik;

p�1X
k=0

vi
0

k

�
+

1

p

� 1

p

p�1X
j=0

hvij ; vi
0

j+ci

(by the Cauchy-Schwarz inequality) with equality if and only if the orthogonal
porcupines fvijgp�1

j=0 and fvi0j gp�1
j=0 have the same barycenters. This can be ensured

by adding the following constraints to the semide�nite program:

p�1X
j=0

p�1X
j0=0

hvij ; vi
0

j0 i = p (7.10)

for all i; i0.

On the other hand, a simplicial porcupine fuijgp�1
j=0 can likewise be transformed

into an orthogonal porcupine fvijgp�1
j=0 by letting

vij =

r
1

p
u? +

r
p� 1

p
uij ; (7.11)

where hu?; uiji = 0 for all i; j and ku?k = 1. This construction results in the
barycenters of all orthogonal porcupines coinciding if the same u? is used for all
simplicial porcupines. Also, the constraints (7.7b) will be satis�ed by the orthog-
onal porcupine if the constraints (7.3b) are satis�ed by the simplicial porcupine.
This in fact implies that we even without the conditions (7.10) can assume that the
barycenters of all orthogonal porcupines coincide. For, using the transformations
in (7.9) and (7.11), we can transform an arbitrary family of orthogonal porcupines
into a family of orthogonal porcupines with coinciding barycenters without decreas-
ing the objective function.

The probability of the equation xi�xi0 = c being satis�ed after the randomized
rounding is

p� Pr[xi  c \ xi0  0]

= p� Pr

"
p�1\
j=0

�
hvi�c; ri � hvij ; ri

�
\

p�1\
j=0

�
hvi00 ; ri � hvi

0

j ; ri
�#

:

The transformations between the di�erent types of porcupines only involve scal-
ing both sides of the inequalities by the same positive factor or adding the same
expression to both sides. Hence Pr[xi  c

T
xi0  0] is una�ected.
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When studying the Max E2-Lin mod p problem, we will use orthogonal porcupines.
Let us show that our construction is a relaxation of Max E2-Lin mod p.

Lemma 7.6. Given an instance of Max E2-Lin mod p with all equations of the
form xi � xi0 = c and the corresponding semide�nite program (7.6), the optimum
of the former can never be larger than the optimum of the latter.

Proof. Suppose that we have an assignment � to the variables xi such that xi is
assigned the value �(xi). Let fêjgp�1

j=0 be orthonormal unit vectors in Rp and set

vij��(xi) = êj for all i and all j 2 Zp.

The sum (7.5) corresponding to an equation xi � xi0 = c then takes the value

1

p

p�1X
j=0

hvij ; vi
0

j+ci =
1

p

p�1X
j=0

hêj+�(xi); êj+c+�(xi0 )i:

If the equation xi � xi0 = c is satis�ed, then �(xi) = �(xi0 ) + c, and

1

p

p�1X
j=0

hêj+�(xi); êj+c+�(xi0 )i = 1:

On the other hand, if the equation is not satis�ed, then �(xi) 6= �(xi0 ) + c, and

1

p

p�1X
j=0

hêj+�(xi); êj+c+�(xi0 )i = 0:

Thus, the maximum of the semide�nite program can never be less than the optimum
of the Max E2-Lin mod p instance.

7.3 Our algorithms

In this section we use the relaxations constructed in Section 7.2.2 to formulate an
algorithm approximating Max 2-Lin mod p within 1=(1 � �(p))p, where �(p) >

0, for all p. The algorithm is constructed in three steps. First, we describe an
algorithm that works for instances of Max E2-Lin mod p where all equations are of
the form xi�xi0 = c. This algorithm is then generalized to handle instances where
also equations of the form xi = c are allowed. Finally, the resulting algorithm is
generalized once more to handle general Max 2-Lin mod p instances.

7.3.1 Equations of the form xi � xi0 = c

We use the semide�nite program (7.6) constructed in Section 7.2.2. We can now
formulate the algorithm to approximate Max E2-Lin mod p restricted to instances
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where all equations are of the form xi � xi0 = c. Below, � is a constant which is to
be determined during the analysis of the algorithm. Given a set of linear equations,
we run both Algorithm 4 and the following algorithm:

Algorithm 5. Construct and solve the semide�nite program (7.6). Use the vec-
tors obtained from the optimal solution to the semide�nite program to obtain an
assignment to the variables xi in the following way: A vector r is selected by inde-
pendently choosing each component as an N(0; 1) random variable. Then, for each
porcupine fvijgp�1

j=0 we �nd the j maximizing hvij ; ri, and set xi = �j.

We take as our result the maximum of the results obtained from Algorithms 4
and 5. By Corollary 7.2, we will always approximate the optimum within 1=(1��)p
if the optimum weight is less than 1 � � times the weight of all equations. Thus,
when analyzing the performance of Algorithm 5, we can assume that the optimum
is at least 1� � times the weight of all equations. Intuitively, this means that for
most equations, the two porcupines involved will be almost perfectly aligned.

Lemma 7.7. If the objective function is at least 1 � � times the total weight of
all equations, then equations of total weight at least 1 � 2�=" times the weight of
the instance have the property that the corresponding terms (7.5) in the objective
function evaluate to at least

p
1� ".

Proof. Let � be the fraction of the equations with the property that the corre-
sponding terms (7.5) in the objective functions are less than

p
1� ". Then the

inequality

�
p
1� "+ (1� �) � 1� �

must always hold. When we solve for � we obtain � � �=(1�
p
1� ") � 2�=".

Let us now study a �xed equation xi�xi0 = c, where the sum of the corresponding
terms in the objective function of the semide�nite program satis�es

1

p

p�1X
j=0

hvij ; vi
0

j+ci =
p
1� "; (7.12)

where " is small. By the constraints in (7.7b), (7.12) implies that

vi
0

j+c =
p
1� "vij +

p
"ecj ;

where ecj is orthogonal to v
i
j and kecjk = 1.

De�nition 7.8. For a �xed equation xi � xi0 = c, let Xj = hvij ; ri, Yj = hvi
0

j+c; ri,
and Zj = hecj ; ri.
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By the construction of the porcupines and the choice of r, the Xj are indepen-
dent identically distributed (from now on abbreviated i.i.d.) N(0; 1) and the Zj are,
possibly dependent, N(0; 1). However, for each �xed j, Xj and Zj are independent.
To show that our algorithm has a performance guarantee of at least 1=(1� �)p, it
is, by Lemma 7.7, su�cient to prove the following:

Lemma 7.9. It is possible to choose universal constants � < 1 and " > 2� such that
for all primes p, and for any equation xi�xi0 = c whose corresponding terms (7.5)
in the objective function are at least

p
1� ",

Pr[equation satis�ed] >
1

p(1� �)(1� 2�=")
:

The proof of this lemma uses four lemmas about the normal distribution. Let

'(x) =
e�x

2=2

p
2�

and

�(x) =

Z x

�1

'(t) dt:

If we integrate �(x) by parts, we obtain

p
2�(1��(x)) =

Z 1

x

e�t
2=2 dt

=

Z 1

x

te�t
2=2t�1 dt

=
e�x

2=2

x
�
Z 1

x

e�t
2=2t�2 dt

=

�
1

x
� 1

x3

�
e�x

2=2 + 3

Z 1

x

e�t
2=2t�4 dt:

The above equalities immediately imply that

'(x)

�
1

x
� 1

x3

�
< 1��(x) <

'(x)

x
; (7.13)

when x > 0. This bound will be used to prove the following lemmas.

Lemma 7.10. Let X0; : : : ; Xp�1 be independent identically distributed N(0; 1) ran-
dom variables. Denote the maximum of the Xi by X(p), and the second maximum
by X(p�1). Then, for any Æ > 0,

Pr
h
X(p) � (1 + Æ)

p
2 ln p

\
X(p�1) � (1 + Æ=2)

p
2 ln p

i
>

1

2p2Æ+Æ
2
(1 + Æ)

p
� ln p

�
1� 1

2 ln p
� 1

2pÆ
p
� ln p

�
:
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Proof. Since the Xi are i.i.d. N(0; 1), we know that

Pr[X(p) � x \X(p�1) � y] = p
�
1��(x)

�
�(y)p�1 (7.14)

when x � y. We now apply the bound on �(x) from (7.13). This bound, together
with the fact that Æ > 0, implies that

1��
�
(1 + Æ)

p
2 ln p

�
>

1p
2�p(1+Æ)

2

�
1

(1 + Æ)
p
2 ln p

� 1

(1 + Æ)3(2 ln p)3=2

�

>
1

2p1+2Æ+Æ2(1 + Æ)
p
� ln p

�
1� 1

2 ln p

�
;

and that

�
�
(1 + Æ=2)

p
2 ln p

�
> 1� 1p

2�p(1+Æ=2)
2
(1 + Æ=2)

p
2 ln p

> 1� 1

2p1+Æ
p
� ln p

:

When this is inserted into (7.14), we obtain

Pr[X(p) � x \X(p�1) � y]

> p
1

2p1+2Æ+Æ2(1 + Æ)
p
� ln p

�
1� 1

2 ln p

��
1� 1

2p1+Æ
p
� ln p

�p�1

> p
1

2p1+2Æ+Æ2(1 + Æ)
p
� ln p

�
1� 1

2 ln p

��
1� 1

2p1+Æ
p
� ln p

�p
:

(7.15)

Consider the last factor in (7.15). It is of the form f(x) = (1�x)p, and this function
is convex on the interval (�1; 1]. By convexity, f(x) � f(0) + f 0(0)x = 1 � px.
Apply this relation to the last factor in (7.15):�

1� 1

2p1+Æ
p
� ln p

�p
> 1� p

1

2p1+Æ
p
� ln p

= 1� 1

2pÆ
p
� ln p

:

Hence �
1� 1

2 ln p

��
1� 1

2p1+Æ
p
� ln p

�p

>

�
1� 1

2 ln p

��
1� 1

2pÆ
p
� ln p

�

= 1� 1

2 ln p
� 1

2pÆ
p
� ln p

+
1

4pÆ
p
� ln p ln p

> 1� 1

2 ln p
� 1

2pÆ
p
� ln p

:

Insert this into (7.15) and the lemma follows.
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Lemma 7.11. Let X and Z be i.i.d. N(0; 1) and " 2 [0; 1]. Then, for any Æ > 0,

Pr
h����1�p1� "

�
X �

p
"Z
��� > Æ

4

p
2(1� ") ln p

i

� 4p�Æ
2(1�")=32"

Æ

s
2"

(1� ")� ln p
:

Proof. Let W = (1 �
p
1� ")X � p"Z. Since X and Z are independent, W 2

N(0; �), where

� =

r�
1�
p
1� "

�2
+ " �

p
2":

Since Pr[jW j > w] = 2(1��(w=�)), we can use (7.13).

Pr

�
jW j > Æ

4

p
2(1� ") ln p

�
= 2

�
1��

�
Æ

4�

p
2(1� ") ln p

��

< 2
4�

Æ
p
2(1� ") ln p

� p�Æ
2(1�")=16�2

p
2�

� 4p�Æ
2(1�")=32"

Æ

s
2"

(1� ")� ln p
:

Lemma 7.12. Let X0; : : : ; Xp�1 be i.i.d. N(0; 1) random variables. Denote the
maximum of the Xi by X(p), and the second maximum by X(p�1). Then

Pr
h
X(p) > X(p�1) + Æ

i
> 1� p2Æ

(p� 1)
p
2�

:

Proof. Since the Xi are independent,

Pr
h
X(p) > X(p�1) + Æ

i
= p� Pr

"
p�1\
i=1

X0 > Xi + Æ

#
:

To compute the latter probability we condition on X0.

Pr

"
p�1\
i=1

X0 > Xi + Æ

#
=

Z 1

�1

�p�1(x� Æ)'(x) dx:
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To bound �p�1(x�Æ), we use the mean value theorem. (In the following equations,
� 2 [x� Æ; x].)

�p�1(x� Æ) =
�
�(x)� Æ'(�)

�p�1

� �p�1(x) � pÆ'(�)�p�2(x)

� �p�1(x) � pÆ�p�2(x) max
y2(�1;1)

'(y)

= �p�1(x) � pÆp
2�

�p�2(x):

From this bound on '(x), we obtainZ 1

�1

�p�1(x � Æ)'(x) dx

�
Z 1

�1

�p�1(x)'(x) dx � pÆp
2�

Z 1

�1

�p�2(x)'(x) dx

=
1

p
� pÆ

(p� 1)
p
2�

and the lemma follows.

Lemma 7.13. Let X and Z be i.i.d. N(0; 1) and " 2 [0; 1]. Then, for any Æ > 0,

Pr
h����1�p1� "

�
X �

p
"Z
��� > Æ=2

i
� 4

Æ

r
"

�
:

Proof. Since X and Z are independent,�
1�
p
1� "

�
X �

p
"Z 2 N(0; �);

where

� =

r�
1�
p
1� "

�2
+ " �

p
2":

Thus,

Pr
h����1�p1� "

�
X �

p
"Z
��� > Æ=2

i
� 2
�
1��

�
Æ=2�

��
� 4�

Æ
p
2�

� 4

Æ

r
"

�
:
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Proof of Lemma 7.9. The randomized rounding succeeds if the �chosen� vectors are
vij and vi

0

j+c, respectively, for some j. Another way to state this is that we want
to estimate the probability that some j maximizes Yj , given that the very same j
maximizes Xj .

We will �rst show that the theorem holds for large p: Let A(Æ) be the event
that the largest Xj is at least (1 + Æ)

p
2 ln p and that all other Xj are at most

(1 + Æ=2)
p
2 ln p. By Lemma 7.10,

Pr[A(Æ)] >
1

2p2Æ+Æ
2
(1 + Æ)

p
� ln p

�
1� 1

2 ln p
� 1

2pÆ
p
� ln p

�
:

Next, let us study the Zj . Let

B(Æ; ") =

p�1\
j=0

�
jXj � Yj j <

Æ

4

p
(1� ")2 ln p

�
:

Since Yj =
p
1� "Xj +

p
"Zj , we can use Lemma 7.11 to obtain

Pr[B(Æ; ")] <
4p1�Æ

2(1�")=32"

Æ

s
2"

(1� ")� ln p
:

The equation is satis�ed if both A(Æ) and B(Æ; ") occur. The probability that this
happens can be bounded by

Pr[A(Æ) \ B(Æ; ")] � Pr[A(Æ)] � Pr[B(Æ; ")]:

It is now clear that we can choose constants Æ, " and � that give the probability we
want for su�ciently large p. For instance, Æ = 10�2, " = 10�7 and � = 10�8 work
when p � 13.

Now it remains to be shown that the claim is valid also for small p. Let C(Æ)
be the event that the di�erence between the largest and the second largest Xj is at
least Æ, and let D(Æ) be the event that, for all j, jXj � Yj j � Æ=2. By Lemmas 7.12
and 7.13,

Pr[C(Æ)] � 1� p2Æ

(p� 1)
p
2�

;

Pr[D(Æ)] � 4p

Æ

r
"

�
:

The equation is satis�ed if both C(Æ) and D(Æ) occur. The probability that this
happens can be bounded by

Pr[C(Æ) \D(Æ)] � Pr[C(Æ)] � Pr[D(Æ)];

and a simple calculation shows that Æ = 10�2, " = 10�7 and � = 10�8 work when
p � 11.
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Putting the pieces together we obtain:

Theorem 7.14. There exists a universal constant � such that there exists, for all
primes p, a randomized polynomial time algorithm approximating systems of linear
equations mod p of the form xi � xi0 = c within 1=(1� �)p.

Proof. The algorithm is as described above. Denote by w the total weight of the
instance. If the optimum is at most (1��)w, Algorithm 4 approximates the solution
within 1=(1� �)p.

Otherwise, by Lemma 7.7, equations with total weight at least (1�2�=")w have
the property that the corresponding terms in the objective function in the semidef-
inite program evaluate to at least

p
1� " in the optimal solution. By Lemma 7.9,

if we choose " = 10�7 and � = 10�8, these equations are satis�ed with probability
at least 1=p(1 � �)(1 � 2�="), over the choice of the random vector r. Thus, the
expected weight of the solution obtained by the rounding is at least w=p(1��).

It is straightforward to adapt the algorithm to handle equations with one unknown:
Simply introduce a new variable x0 which should take the value zero. Each equation
of the form xi = c is replaced by xi � x0 = c. If x0 6= 0 in the optimal solution,
we transform the solution according to xi  xi � x0. This new assignment to the
variables satis�es exactly the same equations as the original one.

The bound in Theorem 7.14 is far from tight. For p = 3, in practice probably the
most interesting value of p, the performance guarantee was evaluated numerically
and was found to be 0.78. This can be compared with Frieze and Jerrum's 0.80-
approximation algorithm for the special case Max 3-Cut [36]

Finally, since nothing in Section 7.3.1 actually uses that p is prime, the results
hold also for composite p.

7.3.2 General equations

In this section we extend the algorithm from Section 7.3.1 to handle general Max
2-Lin mod p instances. We do this by associating p � 1 porcupines, fvi;1j g

p�1
j=0 up

to fvi;p�1
j gp�1

j=0 , with each variable xi. These porcupines are supposed to represent
xi, 2xi, up to (p� 1)xi, respectively. The porcupines are constructed as described
in De�nition 7.4, with (7.7) generalized to

hvi;`j ; v
i;`
k i =

(
1 when j = k,

0 otherwise,
(7.16a)

for all i, all j; k 2 Zp, and all ` 2 Z�
p;

hvi;`j ; v
i0;`0

j+ki = hv
i;`
j0 ; v

i0;`0

j0+ki (7.16b)
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for all i; i0, all j; j0; k 2 Zp, and all `; `0 2 Z�
p;

p�1X
j=0

hvi;`j ; v
i00;`00

j00 i =
p�1X
j=0

hvi
0;`0

j ; v
i00;`00

j00 i (7.16c)

for all i; i0; i00, all j00 2 Zp and all `; `0; `00 2 Z�
p; and

hvi;`j ; v
i0;`0

k i � 0 (7.16d)

for all i; i0, all j; k 2 Zp, and all `; `0 2 Z�
p.

We would want the porcupines to be dependent in such a way that xi = c

is equivalent to kxi = kc, but since the resulting constraint is not linear, this
seems hard to achieve. Instead, we allow the porcupines corresponding to the same
variable to vary freely. Somewhat surprisingly, it turns out that this enables us to
construct an algorithm that approximates Max 2-Lin mod p within 1=(p � �(p)),
where �(p) > 0 for all p but goes towards zero as p grows towards in�nity.

To handle equations of the form axi = c we introduce a new variable x0. Our
algorithm will be designed in such a way that x0 always gets the value 0. Each
equation axi = c can thus be changed to axi�x0 = c. For each equation axi�bxi0 =
c we include the terms

1

p(p� 1)

p�1X
k=1

p�1X
j=0

hvi;kaj ; v
i0;kb
j+kci (7.17)

in the objective function.

Lemma 7.15. Given an instance of Max 2-Lin mod p and the corresponding semi-
de�nite program constructed as described above, the optimum of the former can
never be larger than the optimum of the latter.

Proof. Suppose that we have an assignment � to the variables xi. Let fêjgp�1
j=0 be

orthonormal unit vectors in Rp and set

v
i;`
j�`�(xi)

= êj

for all i, all j 2 Zp and all ` 2 Z�
p. The terms (7.17) corresponding to an equation

axi � bxi0 = c are then

1

p(p� 1)

p�1X
k=1

p�1X
j=0

hvi;kaj ; v
i0;kb
j+kci

=
1

p(p� 1)

p�1X
k=1

p�1X
j=0

hêj+ka�(xi); êj+kc+kb�(xi0 )i:
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If the equation is satis�ed by the assignment �, then ka�(xi) = kb�(xi0 ) + kc, and

1

p(p� 1)

p�1X
k=1

p�1X
j=0

hêj+ka�(xi); êj+kc+kb�(xi0 )i = 1:

On the other hand, if the equation is not satis�ed, then ka�(xi) 6= kb�(xi0) + kc,
and

1

p(p� 1)

p�1X
k=1

p�1X
j=0

hêj+ka�(xi); êj+kc+kb�(xi0 )i = 0:

Thus, the maximum of the semide�nite program can never be less than the
optimum of the Max 2-Lin mod p instance.

Below, �(p) is some function, which is to be determined during the analysis of
the algorithm. We construct an approximation algorithm for Max 2-Lin mod p by
generalizing Algorithm 5 as follows:

Algorithm 6. Construct and solve the above semide�nite program. Use the vec-
tors obtained from the optimal solution to the semide�nite program to obtain an
assignment to the variables xi in the following way: A vector r is selected by inde-
pendently choosing each component as an N(0; 1) random variable. Then we do the
following:

Find the j 2 Zp maximizing hv0;1j ; ri.
Set t j.
For each i 2 [0::n],
For all j 2 Zp, set qi;j  0.
For all k 2 Z�

p,

Find the j 2 Zp maximizing hvi;kj ; ri.
Set qi;k�1(j�t)  1.

Set Qi  
P

k qi;k.
For all j 2 Zp, set qi;j  qi;j=Qi.

Finally, given the resulting qi;j , each variable xi, except for x0, is given the value �j
with probability qi;j . The variable x0 is given the value 0.

Remark 7.16. By the choice of t in Algorithm 6 above, q0;0 will always be non-zero.
This turns out to be essential in the analysis.

To obtain our estimate of the optimum of the Max 2-Lin mod p instance, we
take the maximum of the results obtained from Algorithms 4 and 6.

By Corollary 7.2 and Lemma 7.15, Algorithm 4 is a 1=(1� �)p-approximation
algorithm if the optimum weight of the semide�nite program is less than 1�� times
the weight of all equations. Thus, when analyzing the performance of Algorithm 6,
we can assume that the optimum of the semide�nite program is at least 1�� times
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the weight of all equations. By this assumption and Lemma 7.7, equations of total
weight at least 1�2�=" times the weight of the instance have the property that the
sum of the corresponding terms (7.17) in the objective functions is at least

p
1� ".

Let us now study an arbitrary equation axi � bxi0 = c with that property. I.e.,

1

p(p� 1)

p�1X
k=1

p�1X
j=0

hvi;kaj ; vi
0;kb
j+kci �

p
1� ": (7.18)

We want to show that this equation is satis�ed with probability slightly larger
than 1=p. Let us study the details of the selection procedure in Algorithm 6.
Informally, we expect the following:

� By the condition in (7.18) we expect the vectors vi;kaj and vi
0;kb
j+kc to be almost

perfectly aligned, for all j and k.

� For each k, this should imply that if some j maximizes hvi;kaj ; ri then, with
high probability over the choice of r, we will have that j0 = j + kc maximizes

hvi
0;kb
j0 ; ri.

� In terms of qi;j this means that the equivalence

qi;a�1j 6= 0 () qi0;b�1(j+c) 6= 0

should hold for each j with high probability.

� If the above equivalence holds for all j, the randomized assignment at the end
of Algorithm 6 will �nd a satisfying assignment with probability greater than
1=p.

We now formalize this intuition.

De�nition 7.17. Let Xk
j = hvi;akj ; ri and Y k

j = hvi
0;bk
j+kc; ri.

Remark 7.18. By the construction of the porcupines and the choice of r, the Xk
j

are i.i.d. N(0; 1).

De�nition 7.19. Let "k be de�ned by the relation

1

p

p�1X
j=0

hvi;kaj ; v
i0;kb
j+kci =

p
1� "k: (7.19)

Remark 7.20. By the constraints in (7.16), the above de�nitions imply that

Y k
j =

p
1� "kX

k
j +
p
"kZ

k
j ; (7.20)

where Zk
j 2 N(0; 1). Furthermore, Xk

j and Zk
j are independent.
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Lemma 7.21. Let axi � bxi0 = c be an arbitrary equation with the property that
the corresponding terms in the objective function satisfy (7.18), and let Ak be the
event that the same j maximizes Xk

j and Y k
j . Then, for all Æ > 0,

Pr
h
Ak

i
� p2Æ

(p� 1)
p
2�

+
4p

Æ

r
"k

�
:

Proof. Let Xk
(p) and Xk

(p�1) be the maximum and the second maximum, respec-

tively, of the Xk
j . De�ne the events Bk(Æ) and Ck(Æ) as follows:

Bk(Æ) =
n
Xk

(p) > Xk
(p�1) + Æ

o
;

Ck(Æ) =

p�1\
i=0

���Xk
i � Y k

i

�� < Æ

2

�
:

If both Bk(Æ) and Ck(Æ) occur, then Ak must occur. Furthermore, if there exists
some Æ such that Bk(Æ) and Ck(Æ) both occur with high probability, Ak will also
occur with high probability. For,

Bk(Æ) \ Ck(Æ) � Ak =) Pr
h
Ak

i
� Pr

h
Bk(Æ)

i
+Pr

h
Ck(Æ)

i
: (7.21)

By Lemma 7.12 we obtain the bound

Pr
h
Bk(Æ)

i
� p2Æ

(p� 1)
p
2�

; (7.22)

and by (7.20) and Lemma 7.13 we obtain

Pr
h
Ck(Æ)

i
� 4p

Æ

r
"k

�
: (7.23)

When (7.21), (7.22) and (7.23) are combined, the proof follows.

Lemma 7.22. For �xed i and i0, let Ak be the event that the same j maximizes
Xk
j and Y k

j . Then, if Ak occur for all k, we are ensured that qi;j = qi0;b�1(aj+c) for
all j 2 Zp.

Proof. Fix i and i0. Initially in the algorithm, all qi;j are zero. By the construction
of qi;j in the algorithm, the fact that Ak occur for all k implies that

qi;a�1k�1(j0�t) 6= 0 () qi0;b�1(k�1(j0�t)+c) 6= 0



80 Chapter 7. Approximating linear equations mod p

for all j0 and k. If we substitute j  k�1(j0 � t), we obtain that qi;a�1j is non-zero
if and only if qi0;b�1(j+c) is non-zero. But since

p�1X
j=0

qi;a�1j =

p�1X
j=0

qi;j = 1;

p�1X
j=0

qi0;b�1(j+c) =

p�1X
j=0

qi0;j = 1;

this implies that qi;j = qi0;b�1(aj+c) for all j 2 Zp.

Lemma 7.23. Let axi � bxi0 = c be an arbitrary equation with the property that
the corresponding terms in the objective function satisfy (7.18). Then,

Pr

2
4 \
j2Zp

qi;j = qi0;b�1(aj+c)

3
5 � 1� p2Æp

2�
� 4p(p� 1)

Æ

r
"

�
;

where Æ > 0 is arbitrary.

Proof. By Lemmas 7.21 and 7.22,

Pr

"
p�1\
j=0

qi;a�1j = qi0;b�1(j+c)

#
� Pr

"
p�1\
k=1

Ak

#

� 1�
p�1X
k=1

Pr
h
Ak

i

� 1� p2Æp
2�
� 4p

Æ
p
�

p�1X
k=1

p
"k :

(7.24)

Since the function x 7!
p
1� x is concave when x 2 [0; 1], we can apply Jensen's

inequality to show that

p
1� " �

p�1X
k=1

p
1� "k

p� 1
�

vuut1�
p�1X
k=1

"k

p� 1
;

where the �rst inequality follows from (7.18) and (7.19), and the second from
Jensen's inequality. Thus,

p�1X
k=1

"k

p� 1
� ": (7.25)
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Using the Cauchy-Schwartz inequality, we obtain from (7.25) the bound

p�1X
k=1

p
"k �

vuut�p� 1
� p�1X
k=1

"k � (p� 1)
p
":

When this is inserted into (7.24), the proof follows.

Lemma 7.24. If q0;0 > 0 and qi;j = qi0;b�1(aj+c) for all i; i0 and all j 2 Zp, then
the equation axi � bxi0 = c will be satis�ed with probability at least 1=(p� 1).

Proof. By the construction of the system of linear equations there are no equations
axi � bxi0 = c where i = 0. If i0 6= 0 the qi;j and qi0;j , computed using the
probabilistic construction described above, are used to independently assign values
to xi and xi0 . Thus,

Pr[equation satis�ed] =
X
j

qi;jqi0;b�1(aj+c) =
X
j

q2i;j ;

where the second equality follows from the initial requirement in the formulation of
the lemma. By the construction of Algorithm 6, all qi;j can, for each �xed i, assume
only two values, one of which is zero. The other value qi;j can assume is 1=m, for
some m 2 [1; p� 1]. This implies that

X
j

q2i;j = m� 1

m2
� 1

p� 1
;

since exactly m of the qi;j assume the value 1=m.

If i0 = 0 we know that b = 1 and xi0 = 0. Then

Pr[equation satis�ed] = qi;�a�1c = q0;0:

Since q0;0 6= 0 we know, by the construction of Algorithm 6, that q0;0 � 1=(p� 1),
and the proof follows.

Theorem 7.25. It is possible to choose �(p) > 0 and "(p) > 0 such that, for all
primes p,

Pr[equation satis�ed] >
1

p(1� �)(1� 2�=")

for all equations with the property that the corresponding terms in the objective
function are at least

p
1� ".
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Proof. To prove the theorem, it su�ces to show that

p(1� �)(1� 2�=") Pr[equation satis�ed] > 1:

It follows immediately from the construction of Algorithm 6, together with Lem-
mas 7.21�7.24, that

Pr[equation satis�ed] >
1

p� 1

 
1� p2Æp

2�
� 4p(p� 1)

Æ

r
"

�

!
(7.26)

for all equations where the sum of the corresponding terms in the objective function
is at least

p
1� ". As an ansatz, we choose

Æ(p) =
c1
p
2�

p3
;

"(p) =
c21c

2
2�

2

8p10(p� 1)2
;

�(p) =
c21c

2
2c3�

2

16p11(p� 1)2
;

for some positive constants c1, c2 and c3. When we use this ansatz in (7.26) we
obtain

Pr[equation satis�ed] >
1

p

 
1 +

1� c1 � c2

p
� c1 + c2

p2

!
:

Thus,

p(1� �)(1� 2�=")� Pr[equation satis�ed]

>

 
1� c3

p
� c21c

2
2c3�

2

16p11(p� 1)2

�
1� c3

p

�! 
1 +

1� c1 � c2

p
� c1 + c2

p2

!

>

 
1 +

1� c1 � c2 � c3

p
� c1 + c2 + c3

p2
�
�
1 +

1

p

�
c21c

2
2c3�

2

16p11(p� 1)2

!
:

From this, it is clear that it is possible to obtain

Pr[equation satis�ed] >
1

p(1� �)(1� 2�=")

for all primes p by choosing c1 = c2 = c3 = 1=5.

As an immediate corollary, the main theorem follows. It is proved in exactly the
same way as Theorem 7.14.
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Theorem 7.26. For all primes p, there exists a randomized polynomial time al-
gorithm approximating Max 2-Lin mod p within 1=(1� �(p))p, where �(p) > 0 for
all p.

Proof. The algorithm is as described above. Denote by w the total weight of the
instance. If the optimum is at most (1��)w, Algorithm 4 approximates the solution
within 1=(1� �)p.

Otherwise, Lemma 7.7 tells us that equations with total weight at least (1 �
2�(p)="(p))w have the property that the corresponding terms in the objective func-
tion in the semide�nite program evaluate to at least

p
1� "(p) in the optimal solu-

tion. By Theorem 7.25, there exists �(p) > 0 and "(p) > 0 such that these equations
are satis�ed with probability at least 1=p(1��(p))(1� 2�(p)="(p)), over the choice
of the random vector r. Thus, the expected weight of the solution obtained by the
rounding is at least w=p(1� �(p)).

If we use the explicit value of �(p) from the proof of Theorem 7.25, we see that Max
2-Lin mod p is approximable within 1=(p��(p�12)). It is presumably possible to
improve the bound signi�cantly by making a more careful analysis.

It is possible to generalize the algorithm to Max 2-Lin mod m for composite m:
First notice that since equations where gcd(a; b;m) does not divide c can never be
satis�ed, we can remove them from the instance. Assume that the total weight of
all remaining equations is w. If the optimum is less than (1��)w, there is nothing
to prove since we can simply apply Algorithm 4, while if it is at least (1 � �)w

we consider a prime factor p of m and proceed as follows. We determine values
fdigni=1 mod p such that when setting xi = di + pyi we get a system mod m=p

in yi such that the weight of the satis�able equations is at least w=p(1��(p)). The
result then follows by applying Algorithm 4 to this system, resulting in a solution
that satis�es equations of weight at least w=m(1 � �(p)). The condition that an
equation remains satis�able can be formulated as a linear equation mod p: Consider
the equation axi � bxi0 = c mod m. With the transformation xi = di + pyi we get
adi � bdi0 + p(ayi � byi0) = c mod m, and this equation is satis�able if and only
if adi � bdi0 = c mod p. By the assumption that it is possible to �nd a solution
mod m that satis�es almost all equations, desired values di can be found by the
approximation algorithm for a prime modulus.

7.4 Max p-Cut and comparison to the algorithm of

Frieze and Jerrum

In this section, we go back to simplicial porcupines to simplify the comparison with
the algorithm of Frieze and Jerrum [36], which is described in Section 7.2.1. We
observe that Max p-Cut is a special case of Max E2-Lin mod p: That the edge
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(i; i0) is to be cut is equivalent to exactly one of the equations xi � xi0 = c, for
c = 1; 2; : : : ; p� 1, being satis�ed. This corresponds to the term

p�1X
c=1

0
@p� 1

p2

p�1X
j=0

huij ; ui
0

j+ci+
1

p

1
A

in the objective function. Note that if we use the fact that
P

j u
i
j = 0 for all i, we

obtain exactly the same objective function as Frieze and Jerrum used. Thus, it is
possible to solve Max p-Cut by formulating the instance as a Max E2-Lin mod p

instance and solving it using the methods developed in Section 7.3.1. This may
produce a result closer to the optimum.

Another, seemingly good, strategy to improve the algorithm of Frieze and Jer-
rum is to change the rounding procedure by adding constraints forcing the random
vectors to be far apart.

We show that the two approaches outlined above to some extent are equivalent
to the relaxation (7.1) with the original randomized rounding strategy. Notice,
however, that Frieze and Jerrum's semide�nite program cannot be used for Max
E2-Lin mod p as their objective function cannot represent equations of the form
xi � xi0 = c.

7.4.1 A new rounding scheme

Frieze and Jerrum round the solution to their semide�nite program using p random
vectors r0; : : : ; rp�1 where the components of each ri can be chosen as independent
N(0; 1=

p
n) variables. At �rst, it seems that it would be better to instead choose a

random porcupine.

De�nition 7.27. A random orthogonal porcupine is a porcupine chosen as follows:
The �rst vector s0 in the porcupine is chosen uniformly at random. Then, for each
i � 1, the vector si is chosen uniformly at random from the subspace orthogonal
to the space spanned by the vectors s0; : : : ; si�1. Finally all vectors are normal-
ized. When no confusion can arise, we will simply call the above object a random
porcupine.

One could also imagine using a random simplicial porcupine, de�ned in the
obvious way. We note in passing that a theorem analogous to Theorem 7.5 holds
for random porcupines.

Theorem 7.28. Rounding using a random orthogonal porcupine is equivalent to
rounding using a random simplicial porcupine.
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Proof. Let fsigp�1
i=0 be a random orthogonal porcupine and

s0i =

r
p

p� 1

0
@si � 1

p

X
j

sj

1
A :

It is easy to verify that fs0igp�1
i=0 is a random simplicial porcupine. The probability

that the edge (i; i0) is not cut after the rounding is

p� Pr

"
p�1\
j=1

�
hvi; s00i � hvi; s0ji

�
\

p�1\
j=1

�
hvi0 ; s00i � hvi

0

; s0ji
�#

where vi and vi
0

are vectors from the semide�nite program. Using the same argu-
ment as in the proof of Theorem 7.5, we conclude that this probability is the same
for the orthogonal and simplicial porcupine models.

We now relate the rounding procedure proposed above to the rounding procedure
of Frieze and Jerrum. The �rst thing to notice is that the p random vectors
r0; : : : ; rp�1 are in fact close to a random orthogonal porcupine with high prob-
ability.

Lemma 7.29. Let " � 1. Construct the random vectors r0; : : : ; rp�1 by choosing
the components of each vector as independent N(0; 1=

p
n) random variables. Then

E[hri; rji] =
(
1 if i = j,

0 otherwise,

Pr
�
jhri; rji � E[hri; rji]j > "

�
2 O

�
1=n"2

�
:

Proof. If X and Y are independent N(0; 1=
p
n) random variables,

E[X2] = 1=n;

E[X4] = 3=n2;

E[XY ] = 0;

E[X2Y 2] = E[X2] E[Y 2] = 1=n2;

which implies that

Var[X2] = 2=n2;

Var[XY ] = 1=n2:
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Since the components of the vectors r0; : : : ; rp�1 are independent N(0; 1=
p
n) ran-

dom variables,

E[hri; rji] =
(
1 if i = j,

0 otherwise,

Var[hri; rji] =
(
2=n when i = j;

1=n otherwise:

The above equations combined with Chebyshev's inequality complete the proof.

Note that we regard p as a constant and hide it in the O(�) notation. We now study
the generation of the random porcupine in greater detail.

De�nition 7.30. Let R be the matrix whose columns are r0; : : : ; rp�1 and let G be
the Cholesky factorization of RTR, i.e., G is an upper triangular matrix such that
GTG = RTR. (By construction, RTR is positive de�nite with probability one, and
thus a unique G exists with probability one.) De�ne the matrix S by S = RG�1.

Since the matrix S constructed in De�nition 7.30 is an orthonormal (n � p)-
matrix and the matrix G used to construct S is upper triangular, multiplying R

by G�1 from the right is equivalent to performing a Gram-Schmidt orthogonaliza-
tion of the random vectors r0; : : : ; rp�1. Thus, the vectors s0; : : : ; sp�1, forming
the columns of S, constitute a random porcupine.

Lemma 7.31. Suppose that ��hrj ; r`i � E[hrj ; r`i]
�� � " (7.27)

for all j; `. Then all elements of G� I are O(").

Proof. Since the Cholesky factorization is unique for symmetric positive de�nite

matrices, it follows from the factorization algorithm [43, Algorithm 5.2-1] that
jGjj � 1j 2 O("), and jGj`j 2 O(") when j 6= `.

Corollary 7.32. Construct the random vectors r0; : : : ; rp�1 by choosing the com-
ponents of each vector as independent N(0; 1=

p
n) random variables. Construct the

vectors s0; : : : ; sp�1 by performing a Gram-Schmidt orthogonalization of the vec-
tors r0; : : : ; rp�1. Let v be any vector in Rn, and vr be the projection of v into the
subspace spanned by the vectors r0; : : : ; rp�1. With probability at least 1�O(1=n"2)
over the choice of r0; : : : ; rp�1,

jhv; sj � rjij < kvrkO(")

for all j.
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Proof. Let ej be the p-dimensional vector with zeros in all components but the jth,
and let Ip be the p� p unit matrix. Then

ksj � rjk = kS(Ip �G)ejk = k(Ip �G)ejk 2 O(");

with probability at least 1 � O(1=n"2) by Lemma 7.29 since, by Lemma 7.31, all
elements of Ip �G are O(").

The second important property of the rounding procedure is that the probability
of a �photo �nish� in the rounding procedure is small.

Lemma 7.33. Let v be any vector in Rn and vr be the projection of v into the
subspace spanned by the vectors r0; : : : ; rp�1. Then,

Pr[jhv; sj � s`ij < kvrkÆ] 2 O(Æ):

Proof. By construction, the vectors s0; : : : ; sp�1 are orthogonal unit length vectors
with random orientation. Thus, we can instead view the situation as follows: We
select a random unit length p-dimensional vector w from the subspace spanned by
s0; : : : ; sp�1, and compute the probability that

jhw; sij 2 O(");

where s = sj � s`. But this probability is O(") for any p-dimensional vector s of
constant length.

Corollary 7.34. The probability that the edge (i; i0) is not cut can be written as

p�1X
j=0

Pr

2
64p�1\
`=0
`6=j

n
hvi; rji � hvi; r`i

o
\
p�1\
`=0
`6=j

n
hvi0 ; rji � hvi

0

; r`i
o375 : (7.28)

Suppose that ��hrj ; r`i � E[hrj ; r`i]
�� � "

for all j; `. Given that (i; i0) is not cut, the probability that the above inequalities
hold with a margin of at least kvirkO(") and kvi

0

r kO("), respectively, is 1�O(").

Proof. By Corollary 7.32, hv; rji and hv; sji di�er by at most kvrkO(") with prob-
ability 1�O(1=n"2), and by Corollary 7.33

Pr[jhv; sj � s`ij < kvrkÆ] 2 O(Æ):

If we select Æ 2 O(") this completes the proof, since there is only a constant number
of inequalities in (7.28).

We can now �t the pieces together.
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Theorem 7.35. The probability of the edge (i; i0) being cut when the solution to
the semide�nite program of Frieze and Jerrum is rounded using p random vectors
di�ers by a factor 1+O(n�1=3) from the probability of it being cut when a random
orthogonal porcupine is used in the rounding.

Proof. It follows from Corollaries 7.32 and 7.34 that the probability that the edge
(i; i0) is cut when the rounding procedure uses s0; : : : ; sp�1 di�ers from the prob-
ability that it is cut when the rounding procedure uses r0; : : : ; rp�1 by a factor
1�O

�
1=n"2

�
�O

�
"). If we choose " = n�1=3 this factor is 1�O(n�1=3).

7.4.2 Using porcupines

Traditionally, the analysis of approximation algorithms based on semide�nite pro-
gramming is done using local analysis. In our case this corresponds to �nding the
worst possible con�guration of two porcupines (or vectors).

Theorem 7.36. Consider the edge (i; i0). For each con�guration of vectors vi

and vi
0

from Frieze and Jerrum's semide�nite program there exists a con�gura-
tion of simplicial porcupines fuijgp�1

j=0 and fui0j gp�1
j=0 such that the ratio between the

probability of the edge being cut after rounding and the corresponding term in the
objective function is the same for the two con�gurations.

Corollary 7.37. Using local analysis, the performance guarantee of the porcupine
algorithm for Max p-Cut is not greater than that obtained by Frieze and Jerrum.

Proof of Theorem 7.36. We can without restriction choose coordinate system in
such a way that

vi = (1; 0; : : : ); (7.29)

vi
0

= (�;
p
1� �2; 0; : : : ); (7.30)

where � � �1=p � 1. Let wj 2 Rp�1, j = 0; : : : ; p � 1, be the vertices of a
regular p-simplex with kwjk = 1. Suppose that wj has the coordinates wj =

(wj;1; : : : ; wj;p�1), and consider a simplicial porcupine fuijgp�1
j=0 that we wish to put

in correspondence with vi. Let Li be the (p � 1)-dimensional subspace spanned
by fuijgp�1

j=0 . By symmetry, we can assume that the coordinates of uij in Li are

(wj;1; : : : ; wj;p�1). We construct another simplicial porcupine fui0j gp�1
j=0 (corre-

sponding to vi
0

) with the following properties. Let L?i = Li0 � Li. Denote with

�L(v) the projection of v onto the subspace L. Then ui
0

j can be assumed to have

the coordinates
p
1� �2(wj;1; : : : ; wj;p�1) in L?i (again by symmetry) and satisfy

�Li(u
i0

j ) = �uij . We note that fuijgp�1
j=0 and fui0j gp�1

j=0 satisfy the constraints (7.3a)
and (7.3c).

In the rounding scheme of Frieze and Jerrum, p random vectors r0; : : : ; rp�1

are chosen. These vectors are n-dimensional, and all components are independent
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N(0; 1) variables. This process can be viewed as choosing a random variable from
the pn-dimensional normal distribution with mean zero and unit covariance ma-
trix.

Consider the following way to generate the random vectors s0; : : : ; sp�1:

sj =

r
p� 1

p

p�1X
`=1

wj;`t` +

r
1

p
t0 (7.31)

where the components of each tj , j = 0; : : : ; p�1, are independent N(0; 1). Denote
with sj;m the mth component of sj , for 0 � j � p � 1 and 1 � m � n. Then
sj;m 2 N(0; 1) for all j and m. Furthermore, a straightforward calculation shows
that

E[sj;msj0;m0 ] =

(
1 when j = j0 and m = m0;

0 otherwise:

Therefore the sj;m variables can be viewed as the components of a single random
variable with the pn-dimensional normal distribution with mean zero and unit co-
variance matrix. This implies that rounding using the random vectors s0; : : : ; sp�1

is equivalent to rounding using the vectors r0; : : : ; rp�1.
Using the same techniques as in the proof of Theorem 7.5, it can be shown that

we instead of the random vectors de�ned in (7.31) can perform the randomized
rounding using the vectors

s0j =

p�1X
`=1

wj;`t` (7.32)

for j = 0; : : : ; p � 1. We let t` = (�`; �`; : : : ) where �`; �` 2 N(0; 1) for all `. The
rest of the coordinates are N(0; 1) as well but are not used in the calculations
below.

Let us now compute the probability of the edge being cut using the approach
of Frieze and Jerrum. Let Ai

j be the event that hvi; s00i � hvi; s0ji. Then,

Pr[(i; i0) is not cut] = p� Pr[xi  0 and xi0  0]

= p� Pr

2
4p�1\
j=1

�
Ai
j \Ai0

j

�35 :
(7.29), (7.30) and (7.32) immediately imply that

Ai
j ()

p�1X
`=1

(w0;` � wj;`)�` � 0;

Ai0

j () �

p�1X
`=1

(w0;` � wj;`)�` +
p
1� �2

p�1X
`=1

(w0;` � wj;`)�` � 0:
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Finally, we focus on the randomized rounding used to obtain a cut from a con-
�guration of porcupines. The random vector r used in the rounding can be assumed
to satisfy

�Li(r) = (�1; �2; : : : ; �p�1) (7.33)

�L?i (r) = (�1; �2; : : : ; �p�1) (7.34)

where �i; �i 2 N(0; 1) for all i. Let Bi
j be the event that hui0; ri � huij ; ri. Then,

Pr[(i; i0) is not cut] = p� Pr[xi  0 and xi0  0]

= p� Pr

2
4p�1\
j=1

�
Bi
j \ Bi0

j

�35 :
(7.33) and (7.34) imply that

Bi
j ()

p�1X
`=1

(w0;` � wj;`)�` � 0;

Bi0

j () �

p�1X
`=1

(w0;` � wj;`)�` +
p
1� �2

p�1X
`=1

(w0;` � wj;`)�` � 0;

which shows that the probability of the edge being cut is indeed the same in both
cases.

To �nish the proof, we just note that the corresponding terms in the objective
functions in both cases evaluate to p�1

p
(1� �).

We cannot conclude that the performance guarantees are the same as there might
exist porcupine con�gurations that cannot be put in correspondence with feasible
solutions to (7.1). Also, the con�gurations used in the above proof might not
be optimal for the semide�nite program. Using local analysis, we have obtained
numerical evidence that the performance guarantees are indeed the same when
p = 3, but we have not been able to prove it formally for any p.

Conjecture 7.38. Using local analysis, the orthogonal and simplicial porcupine
models are equivalent to Frieze and Jerrum's algorithm for Max p-Cut.

7.5 Negative results

In this section we turn to investigating lower bounds for the Max E2-Lin mod p

problem. We �rst construct a gadget that reduces Max E3-Lin mod p to Max E2-
Lin mod p. This gadget is valid for all primes p � 3. The lower bound which follows
is of the form 1 � �(1=p2). This lower bound can be improved by constructing a
PCP that essentially reduces Max E3-Lin mod 2 to Max E2-Lin mod p. This PCP
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reduction is only valid for p � 11, but for those p it gives a constant lower bound,
independent of p. When the two reductions are combined, it follows that there
exists a universal constant such that it is NP-hard to approximate Max E2-Lin
mod p within that factor. The details of the PCP construction are beyond the
scope of this thesis, and the result is stated without proof � see [7] for details.

7.5.1 Small p

For the case p = 2, it is possible to use the methods of Trevisan et al. [81] to
construct optimal 6-gadgets reducing PC0 and PC1 to Max E2-Lin mod 2. When
these gadgets are combined with the hardness results by Håstad [52], it follows
that it is NP-hard to approximate Max E2-Lin mod 2 within 11=12 + ". We now
show how to construct a gadget which can be used to show hardness results for
Max E2-Lin mod p when p � 3. Note that the gadget construction techniques of
Trevisan et al. [81], described in Chapter 4, are of no use as the resulting linear
programs are huge. This is the case even if one considers any reasonable restriction
of the canonical witness matrix.

We start with an instance of Max E3-Lin mod p. For each equation in the
instance we construct a number of equations with two variables per equation. By the
result of Håstad [52], it isNP-hard to approximate Max E3-Lin mod p within 1=p+

", for any " > 0, also in the special case when all coe�cients in the equations are
equal to one. Thus, we can assume that, for all i, the ith equation in the Max
E3-Lin mod p instance is of the form

xi1 + xi2 + xi3 = c:

For an arbitrary equation of this form we now construct the corresponding equations
in the Max E2-Lin mod p instance. Consider assignments to the variables xi1 , xi2 ,
and xi3 with the property that xi1 = 0. There are p2 such assignments, and p of
those are satisfying. For each of the p2 � p unsatisfying assignments

(xi1 ; xi2 ; xi3) (0; a; b) a+ b 6= c

we introduce a new auxiliary variable yi;a;b and construct the following triple of
equations:

xi1 � yi;a;b = 0; (7.35a)

xi2 � yi;a;b = a; (7.35b)

xi3 � (p� 2)yi;a;b = b: (7.35c)

There is a di�erent yi;a;b for each triple. Our Max E2-Lin mod p instance contains
3m(p2 � p) equations if the Max E3-Lin mod p instance contains m equations.

Lemma 7.39. When p � 3 is prime, the above construction is a (p � 1)(p + 3)-
gadget.
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Proof. Let � be an assignment to the xi and the yi;a;b such that the number of
satis�ed equations in the Max E2-Lin mod p instance is maximized. Since each
�xed yi;a;b occurs only in three equations, we can assume that �(yi;a;b) is such that
as many as possible of these three equations are satis�ed. We now study some
arbitrary equation

xi1 + xi2 + xi3 = c (7.36)

from the Max E3-Lin mod 2 instance, and the corresponding 3(p2 � p) equations
of type (7.35) from the Max E2-Lin mod p instance.

Assume that the assignment � satis�es (7.36). Then, for arbitrary a and b

such that a + b 6= c there is no assignment to yi;a;b such that all corresponding
equations (7.35) containing yi;a;b are satis�ed. For, if we sum the three equations
in a triple, the left hand side becomes xi1 +xi2 +xi3 and the right hand side a+ b.
If all equations in the triple (7.35) were satis�ed, then this new equation would also
be satis�ed. But a+ b 6= c by construction, which contradicts this assumption. We
can, however, always satisfy one of the three equations containing yi;a;b by choosing
�(yi;a;b) = �(xi1 ). In some cases it is possible to satisfy two of the three equations.
In fact, exactly 3(p� 1) of the p2� p triples of type (7.35) have this property. For,
suppose that the satisfying assignment is

�(xi1 ; xi2 ; xi3) = (s1; s2; s3):

Remember that each triple (7.35) corresponds to an assignment that does not satisfy
(7.36). There are exactly 3(p� 1) ways to construct unsatisfying assignments

�(xi1 ; xi2 ; xi3) = (u1;j ; u2;j ; u3;j)

with the property that (s1; s2; s3) and (u1;j ; u2;j ; u3;j) di�er in exactly one position.
Such an assignment corresponds to the triple

xi1 � yi;a;b = 0;

xi2 � yi;a;b = u2;j � u1;j ;

xi3 � (p� 2)yi;a;b = u3;j � (p� 2)u1;j :

With the assignment �(yi;a;b) = u1;j , two of the above three equations are satis�ed,
since (s1; s2; s3) and (u1;j ; u2;j ; u3;j) di�er in exactly one position. On the other
hand, two di�erent unsatisfying assignments (u1;j ; u2;j ; u3;j) and (u1;j0 ; u2;j0 ; u3;j0),
both with the property that they di�er from the satisfying assignment in exactly
one position, can never correspond to the same triple. For, if that were the case,
the equations

u2;j � u1;j = u2;j0 � u1;j0

u3;j � (p� 2)u1;j = u3;j0 � (p� 2)u1;j0

uk;j = uk;j0 for some k 2 f1; 2; 3g
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would have to be simultaneously satis�ed. This, however, implies that uk;j = uk;j0

for all k. Summing up, the contribution to the objective function in the Max E2-Lin
mod p instance is

2� 3(p� 1) +
�
(p2 � p)� 3(p� 1)

�
= (p� 1)(p+ 3):

Let us now assume that the assignment � does not satisfy (7.36). Then for
exactly one pair (a; b), all three equations containing yi;a;b can be satis�ed. By a
similar argument as above, exactly 3(p� 2) of the p2� p triples of type (7.35) have
the property that two equations can be satis�ed, and in the remaining triples one
equation can be satis�ed. The contribution to the objective function in the Max
E2-Lin mod p instance is

3 + 2� 3(p� 2) +
�
(p2 � p)� (3(p� 2) + 1)

�
= (p� 1)(p+ 3)� 1:

Theorem 7.40. For all " > 0 and all p � 3, it is NP-hard to approximate Max
E2-Lin mod p within (p2 + 3p� 1)=(p2 + 3p) + ".

Proof. By the result of Håstad [52], it is NP-hard to approximate Max E3-Lin
mod p within 1=p + ", for any " > 0, also in the special case when all coe�cients
in the equations are equal to one. When this result is combined with Lemma 7.39,
the theorem follows.

7.5.2 Large p

By modifying the PCP of Håstad [52], the following theorem is proved in [7]:

Theorem 7.41. When p � 11, it is NP-hard to approximate Max E2-Lin mod p

within 17=18+ " for all " > 0.

When we combine this result with the results for small p, we obtain the following
general result:

Theorem 7.42. For all primes p, it is NP-hard to approximate Max E2-Lin mod p
within 69=70+ ".

Proof. For p = 2 we use the hardness result by Håstad [52]. For p 2 f3; 5; 7g we
use Theorem 7.40, and for p � 11 we use Theorem 7.41.
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Chapter 8

An approximation algorithm

for Max p-Section

8.1 Introduction

In Chapter 3, Goemans and Williamson's [40] approximation algorithm for Max Cut
was described. It features a novel approach based on semide�nite programming.
Frieze and Jerrum [36] extended this approach and applied it to two interesting
generalizations of Max Cut: The Max p-Cut problem, where the vertices are to
be partitioned into p parts instead of two, and the Max Bisection problem, where
the vertices are to be partitioned into two halves of equal size. For the Max p-

Cut problem they obtained a
�
p�1
p

+ �(p�2 log p)
�
-approximation algorithm and

for the Max Bisection problem a 0.651-approximation algorithm. Recently, Ye [85]
obtained a 0.699-approximation algorithm for the Max Bisection problem.

In this chapter we study the Max p-Section problem, which is a generalization of
the Max Bisection problem: The vertices are to be partitioned into p parts of equal
size so as to maximize the weight of the edges connecting di�erent parts. Heuristics
for this problem, arising in the context of �nding a good layout strategy for data
on parallel web servers, were recently considered by Jensch, Lüling and Sensen [53].

For Max p-Section, the approach of Frieze and Jerrum does not improve on
the simple randomized algorithm: Select a p-section uniformly at random. It is
easy to see that this gives a p�1

p
-approximation algorithm as the probability of an

edge being cut is p�1
p
. Is there a way to improve on this simple algorithm? The

main contribution of this chapter is a
�
p�1
p

+�(p�3)
�
-approximation algorithm for

Max p-Section, thus showing that the naive randomized algorithm is not the best
possible for this problem. Our algorithm is based on semide�nite programming. It
is easy to formulate but the analysis is non-trivial.

95
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Why is it harder to come up with an approximation algorithm for the Max
p-Section problem than for the Max p-Cut problem? Traditionally, approximation
algorithms based on semide�nite programming have been analyzed by evaluating,
analytically or numerically, the performance on local con�gurations. For the Max p-
Section problem, this technique of analysis must be amended with a global analysis
to show that an even p-section is produced.

8.2 The main algorithm

The foundation of our approximation algorithm is a semide�nite relaxation of the
Max p-Section problem. In Chapter 7 we considered linear equations mod p, and
introduced a new type of relaxation. We will use this relaxation also in this chapter:
To each vertex xi corresponds a simplicial porcupine fvijgp�1

j=0 , and to the edge

(xi; xj) corresponds the term
p�1
p
� p�1

p2

Pp�1
k=0hvik ; v

j
ki (omitting the weight wij) in

the objective function. If the simplices corresponding to all the vertices xi shared
vertices in Rn, we could solve the Max p-Section problem to optimality using this
approach. Alas, this is not the case, and we therefore add inequalities that are valid
for such a con�guration and which simplify the analysis. We will use the following
relaxation:

maximize
p� 1

p

X
i;j

wij

 
1� 1

p

p�1X
k=0

hvik ; vjki
!

subject to hvik ; viki = 1 for all i; k,
hvik ; vik0i = �1

p�1 for all i and all k 6= k0,

hvik ; v
j
k0i � �1

p�1
for all i 6= j and all k; k0,

hvij ; vi
0

j+ki = hvij0 ; vi
0

j0+ki for all i; i0 and all j; j0; k,P
i v

i
k = 0 for all k.

(8.1)

The �rst two constraints guarantee that fvijgp�1
j=0 is a simplicial porcupine, the third

and fourth constraints make the solution more symmetric and therefore easier to
analyze, and the last constraint encourages an even partition of the variables after
the randomized rounding. For p = 2 the relaxation is equivalent to the relaxation
used by Frieze and Jerrum [36] for the Max Bisection problem.

In the remainder of this chapter we will analyze the following randomized algo-
rithm for the Max p-Section problem.

Algorithm 7. Approximation algorithm for Max p-Section.

1. Solve the semide�nite program (8.1).

2. Generate r 2 Rn(p�1) by choosing each component as N(0; 1) independently.
For each vertex xi and each j = 0; 1; : : : ; p� 1, let qij =

1
p
+ chr; viji. Now �x

i. If all qij are in [0; 2=p], set pij = qij for all j, otherwise set pij = 1=p for
all j.
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3. For each i, put xi in part j of the partition with probability pij .

4. Balance the partition so that each part contains n=p vertices. This is described
in detail in Section 8.4 below.

Note that step 3 is well-de�ned in the sense that
P

j pij = 1 for all i; this follows

from the property
P

j v
i
j = 0 of simplicial porcupines.

The value of the constant c depends on p; a precise expression for c will be given
in Lemma 8.2 below.

An interesting feature of the algorithm is that it involves three randomized
passes: First r is chosen as a random vector in Rn(p�1) in step 2, then a preliminary
partition is constructed from independent coin tosses in step 3, and �nally the
balancing scheme in step 4 also makes use of randomness.

The running time of the algorithm is dominated by the time it takes to solve
the semide�nite relaxation in step 1.

8.3 Analyzing local con�gurations

In this section we will analyze the performance of the algorithm up to step 3; the
adjustments made in step 4 will be analyzed in Section 8.4.

The intuition behind the algorithm is as follows: If the porcupines fvikg
p�1
k=0 and

fvjkg
p�1
k=0 corresponding to the vertices xi and xj are almost perfectly misaligned, in

the sense that hvik; v
j
ki is close to �1

p�1
, then the random variables pik and pjk will

be negatively correlated and the probability that xi and xj will be put in the same
part of the partition by step 3 will be less than 1=p. On the other hand, if the two
porcupines are almost perfectly aligned, corresponding to the inner products being
close to 1, the probability that the vertices will be put in the same part will be
greater than 1=p.

Consider the edge (xi; xj). The contribution to the objective function from this
edge is

p� 1

p

�
1� 1

p

p�1X
k=0

hvik; vjki
�
;

where we omit the weight wij from now on as it does not a�ect the analysis. If
we can bound the ratio between the probability that xi and xj end up in di�erent
parts and this contribution, we have a bound on the performance guarantee after
step 3. We therefore set out to do just that.

Denote withXij(r) the probability that the edge (xi; xj) is cut given the random
vector r. Then the expected performance guarantee after step 3, which we will
denote G, satis�es

G � min
E[Xij(r)]

p�1
p

�
1� hvi0; vj0i

�



98 Chapter 8. An approximation algorithm for Max p-Section

where the minimum is taken over all possible con�gurations of the two porcupines
fvikg

p�1
k=0 and fv

j
kg

p�1
k=0, and the expectation is over the choice of r. This follows from

hvi0; vj0i = hvik; v
j
ki for all k, which is a consequence of the fourth constraint in the

semide�nite program (8.1).
As the porcupines fvikg

p�1
k=0 and fvjkg

p�1
k=0 together span a space of dimension

at most 2(p � 1), we will from now on assume that r 2 R2(p�1) for the sake of
convenience. Let 
ij =

�
r : jhvik ; rij � 1=pc and jhvjk ; rij � 1=pc for all k

	
. Note

that 
ij is symmetric; r 2 
ij if and only if �r 2 
ij . This will simplify the
analysis later on.

We can write

Xij(r) =

(
1�Pp�1

k=0 qikqjk if r 2 
ij ;
p�1
p

otherwise,

and we now turn to bounding E[Xij(r)]. As the geometry of 
ij makes it hard to
calculate an exact expression, we will settle for a lower bound. This su�ces as we
seek to bound the performance guarantee from below.

Let Dc = fr : jrj � 1=pcg be the largest sphere �tting within 
ij . We now
obtain

E[Xij(r)] =
1

(2�)p�1

Z
R2(p�1)

Xij(r)e
�jrj2=2dV

� 1

(2�)p�1

Z

ij

Xij(r)e
�jrj2=2dV

� 1

(2�)p�1

Z
Dc

�p� 1

p
� c

p

p�1X
k=0

hvik + v
j
k; ri � c2

p�1X
k=0

hvik; rihvjk ; ri
�
e�jrj

2=2dV:

The region Dc is spherically symmetrical, and therefore
R
Dc
hvik; rie�jrj

2=2dV van-
ishes. This gives the bound

E[Xij(r)] �
1

(2�)p�1

Z
Dc

�p� 1

p
� c2

p�1X
k=0

hvik; rihvjk ; ri
�
e�jrj

2=2dV: (8.2)

We will now consider the term
R
Dc
hvik; rihv

j
k ; rie�jrj

2=2dV in (8.2). To analyze

this 2(p � 1)-dimensional integral, we introduce an orthonormal basis feig2(p�1)
i=1

for R2(p�1). Without restriction, it can be chosen such that vik = e1 and v
j
k =

(cos �)e1 + (sin �)e2 where � is the angle between vik and v
j
k; hence cos � = hvik; v

j
ki.

We can now write r 2 R2(p�1) as r =
P2(p�1)

i=1 riei with ri 2 R for all i. This givesZ
Dc

hvik; rihvjk ; rie�jrj
2=2dV =

Z
Dc

r1(r1 cos � + r2 sin �)e
�jrj2=2dV

=

Z
Dc

r21hvik; vjkie�jrj
2=2dV
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where the last simpli�cation is due to the symmetry of Dc.

Furthermore, as Dc is spherically symmetrical, this can be simpli�ed further
using

Z
Dc

r21hvik; vjkie�jrj
2=2dV =

1

2(p� 1)

Z
Dc

hvik; vjkijrj2e�jrj
2=2dV:

Let us now turn to (8.2) again. If we combine the last sequence of simpli�ca-
tions with the relation hvik ; v

j
ki = hvi0; v

j
0i, valid for all k by the inequalities in the

SDP (8.1), we obtain

E[Xij(r)] �
1

(2�)p�1

Z
Dc

�p� 1

p
� pc2

2(p� 1)
jrj2hvi0; vj0i

�
e�jrj

2=2dV:

We can now exploit the symmetry of the region and the formula for the surface
area of the hypersphere,

Z
S2p�3

dS =
2�p�1

(p� 2)!
;

to simplify this further:

E[Xij(r)] �
1

(2�)p�1

Z
Dc

�p� 1

p
� pc2

2(p� 1)
jrj2hvi0; vj0i

�
e�jrj

2=2dV

=
1

(2�)p�1

Z
S2p�3

dS

Z 1=pc

0

�p� 1

p
� pc2

2(p� 1)
hvi0; vj0is2

�
s2p�3e�s

2=2ds

=
1

2p�1(p� 2)!

Z 1=(pc)2

0

�p� 1

p
� pc2

2(p� 1)
hvi0; vj0iu

�
up�2e�u=2du:

From elementary calculus we have

Z
ume�u=2du =

e�u=2

�1=2
�
um � mum�1

�1=2 +
m(m� 1)um�2

(�1=2)2 + � � �+ (�1)mm!

(�1=2)m
�

= �2e�u=2
mX
k=0

2m�km!

k!
uk
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which gives the lower bound

E[Xij(r)] �
1

2p�1(p� 2)!

 
p� 1

p
(�2)(p� 2)!

h
e�u=2

p�2X
k=0

2p�2�kuk

k!

iu=1=(pc)2

u=0

� hvi0; vj0i
pc2

2(p� 1)
(�2)(p� 1)!

h
e�u=2

p�1X
k=0

2p�1�kuk

k!

iu=1=(pc)2

u=0

!

=
p� 1

p

h
e�u=2

p�2X
k=0

uk

2kk!

i0
1=(pc)2

� pc2hvi0; vj0i
h
e�u=2

p�1X
k=0

uk

2kk!

i0
1=(pc)2

:

We want to estimate the ratio between this lower bound and the contribution to
the objective function; p�1

p

�
1 � hvi0; vj0i

�
. A nice feature of the lower bound on

E[Xij(r)] is that the only parameter describing the geometric relation between the

two porcupines fvikg
p�1
k=0 and fvjkg

p�1
k=0 is the inner product hvi0; vj0i which is also

present in the objective function.

Lemma 8.1.

p�1
p

"
e�u=2

p�2X
k=0

uk

2kk!

#0
1=(pc)2

� pc2hvi0; vj0i
"
e�u=2

p�1X
k=0

uk

2kk!

#0
1=(pc)2

p�1
p

�
1� hvi0; vj0i

�
is an increasing function in hvi0; vj0i for hvi0; vj0i 2

�
� 1
p�1

; 1
�
.

Proof. The numerator is the integral of a non-negative function over a subset of
R

2(p�1) and hence non-negative for all hvi0; vj0i in the interval and, as a special case,

for hvi0; vj0i = 1. This means that the fraction above can be written as

a� bhvi0; vj0i
1� hvi0; vj0i

with a � b > 0. This function is increasing for hvi0; vj0i 2
�
� 1
p�1

; 1
�
.

By Lemma 8.1, we only have to consider the case hvi0; vj0i = � 1
p�1 when looking

for a lower bound on the performance guarantee. This gives the lower bound

G � p� 1

p
+

pc2

p� 1
� e�1=2(pc)2

 
p� 1

p

p�2X
k=0

1

(2p2c2)kk!
+

pc2

p� 1

p�1X
k=0

1

(2p2c2)kk!

!
:

Out �rst goal is to prove that G � p�1
p

+�(p�k) for some constant k. To that
end we need to choose c as a function on p.
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Let c = �=p1:5 where � � 1=2. The last two sums in the lower bound on G are

p� 1

p

p�2X
k=0

1

(2p2c2)kk!
+

pc2

p� 1

p�1X
k=0

1

(2p2c2)kk!

=
p� 1

p

p�2X
k=0

1

k!

� p

2�2

�k
+

�2

p2(p� 1)

p�1X
k=0

1

k!

� p

2�2

�k
:

As 2�2 � 1=2, the (k + 1)st term in each sum is at least twice as large as the kth
term. Therefore

p� 1

p

p�2X
k=0

1

(2p2c2)kk!
+

pc2

p� 1

p�1X
k=0

1

(2p2c2)kk!

� p� 1

p

2

(p� 2)!

� p

2�2

�p�2

+
�2

p2(p� 1)

2

(p� 1)!

� p

2�2

�p�1

� 2

(p� 2)!

� p

2�2

�p�2

+
1

(p� 2)!

� p

2�2

�p�2

� 2�2

p2(p� 1)2

� p

2�2

�

� 3

(p� 2)!

� p

2�2

�p�2

� 3pp

(2�2)p�2p!
� 3epp

2�p(2�2)p�2

where the last inequality follows from the lower bound p! � p2�p ppe�p from
Stirling's formula. Thus

G � p� 1

p
+
�2

p3
� e�p=2�

2 3epp
2�p(2�2)p�2

=
p� 1

p
+

1

p3

�
�2 � 3p

2�
ep+2:5 log p�(p�2) log(2�2)�p=2�2

�
:

The following lemma is now easily veri�ed and summarizes this section.

Lemma 8.2. For c = 0:2=p1:5 the performance guarantee G of Algorithm 7 when
the cost of the balancing is neglected satis�es

G � p� 1

p
+

1

30p3

for p � 3.

8.4 Balancing the partition

The partition produced in step 3 of Algorithm 7 is not necessarily an even p-section.
In this section we will estimate the decrease in the objective function due to the
cost of balancing and provide a balancing scheme. This concludes the analysis of
the performance guarantee of Algorithm 7.
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8.4.1 The distance to an even p-section

There are two types of errors that might make the partition uneven:

1. For a �xed j,
P

i pij may di�er from n=p.

2. The actual number of vertices placed in part j may di�er from
P

i pij .

We start o� by analyzing how balanced the partition can be expected to be. To
that measure we let Zj =

P
i pij . For i �xed, step 2 of the algorithm sets pij = 1=p

for all j if any qij =
1
p
+chr; viji is outside [0; 2=p]. The interval [0; 2=p] is symmetric

around 1=p and all qij have symmetric distribution around 1=p, hence E[Zj ] = n=p.
In order to estimate the cost for balancing we need to study the variance of Zj :

Var[Zj ] =E
hX

i

X
i0

pijpi0j

i
� E

hX
i

pij

i2

=
X
i

X
i0

Z
R2(p�1)

pij(r)pi0j(r)
e�jrj

2=2

(2�)p�1
dV � n2

p2

=
X
i

X
i0

Z

ii0

pij(r)pi0j(r)
e�jrj

2=2

(2�)p�1
dV

+
X
i

X
i0

Z
R2(p�1)n
ii0

pij(r)pi0j(r)
e�jrj

2=2

(2�)p�1
dV � n2

p2
:

(8.3)

Consider the terms in the second sum in (8.3). We split the region into three disjoint

regions as follows: Let R2(p�1) n
ii0 = D1 [D2 [D3 where D1 is the region where
jhvik; rij > 1=pc for some k but jhvi0k ; rij � 1=pc for all k, D2 is de�ned as D1 but
with the roles of i and i0 reversed, and D3 is the region where jhvik ; rij > 1=pc for

some k and jhvi0k ; rij > 1=pc for some k. By the de�nition of pij(r), we have that
pij(r) = pi0j(r) = 1=p for r 2 D3. Consider the term pij(r)pi0j(r) for some r 2 D1.
Then �r 2 D1 as D1 is symmetric with respect to negation. By the de�nition of
D1, pij(r) = pij(�r) = 1=p. Furthermore, pi0j(r) + pi0j(�r) = (1=p + chvik ; ri) +
(1=p + chvik;�ri) = 2=p. A similar argument can be made if r 2 D2. As the
exponential factor only depends on jrj, we can conclude thatZ

R2(p�1)n
ii0

pij(r)pi0j(r)
e�jrj

2=2

(2�)p�1
dV =

Z
R2(p�1)n
ii0

1

p2
e�jrj

2=2

(2�)p�1
dV:

The terms in the �rst sum in (8.3) areZ

ii0

�1
p
+ chr; viji

��1
p
+ chr; vi0j i

� e�jrj2=2
(2�)p�1

dV

=

Z

ii0

� 1

p2
+ c2hr; vijihr; vi

0

j i
� e�jrj2=2
(2�)p�1

dV

where the equality follows from the symmetry of 
ii0 .
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Combining these relations gives

Var[Zj ]

=
X
i

X
i0

 Z
R2(p�1)

1

p2
e�jrj

2=2

(2�)p�1
dV +

Z

ii0

c2hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV

!
� n2

p2

=
X
i

X
i0

 
E
h 1
p2

i
+

Z

ii0

c2hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV

!
� n2

p2

=
X
i

X
i0

Z

ii0

c2hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV:

(8.4)

It turns out to be bene�cial to write the integral in the sum as follows:

Z

ii0

hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV =

Z
R2(p�1)

hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV

�
Z
R2(p�1)n
ii0

hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV :

(8.5)

The �rst of these integrals has a spherically symmetric domain, so we can use the
simpli�cation from Section 8.3:

Z
R2(p�1)

hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV = hvij ; vi

0

j i
Z
R2(p�1)

jrj2e�jrj2=2
2(p� 1)(2�)p�1

dV : (8.6)

Using the inclusion R2(p�1) n
ii0 � fr : jrj � 1=pcg, we can bound the size of
the second integral in (8.5):

�����
Z
R2(p�1)n
ii0

hr; vijihr; vi
0

j i
e�jrj

2=2

(2�)p�1
dV

����� �
Z
jrj�1=pc

��hr; vijihr; vi0j i�� e�jrj
2=2

(2�)p�1
dV

�
Z
jrj�1=pc

jrj2e�jrj2=2
(2�)p�1

dV

= e�1=2(pc)22(p� 1)

p�1X
k=0

1

k!(2p2c2)k
:

(8.7)

The last simpli�cation follows from calculations made in Section 8.3. Notice that
this rather crude estimate actually does not depend on i or i0.
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We now turn to the expression (8.4) for Var[Zj ]. Each term in the sum is
decomposed into two parts in (8.5), and the sum of all terms of the �rst form
vanishes when we use (8.6):

X
i

X
i0

hvij ; vi
0

j i
Z
R2(p�1)

jrj2e�jrj2=2
2(p� 1)(2�)p�1

dV

=
X
i

hvij ;
X
i0

vi
0

j i
Z
R2(p�1)

jrj2e�jrj2=2
2(p� 1)(2�)p�1

dV

= 0:

The last equality is due to the last constraint in the semide�nite program (8.1).
A bound on the sum of all terms of the second form follows immediately

from (8.7), and we can conclude that

Var[Zj ] � 2(p� 1)c2n2e�1=2(pc)2
p�1X
k=0

1

k!

� 1

2c2p2

�k
:

As c = �=p1:5 and � � 1=2, the same estimates used for the similar sums in
Section 8.3 give the bound

Var[Zj ] � 2(p� 1)
�2

p3
n2e�p=2�

2

p�1X
k=0

1

k!

� p

2�2

�k

� 2(p� 1)
�2

p3
n2e�p=2�

2

2
1

(p� 1)!

� p

2�2

�p�1

< 4n2�2e�p=2�
2 pp�2

(2�2)p�1p!

� 2p
2�

n2e�p=2�
2 ep

p2:5(2�2)p�2

� 2p
2�

n2ep�2:5 log p�p=2�2�(p�2) log 2�2

:

It is easily veri�ed that choosing � = 0:2 results in Var[Zj ] � p�25n2 for all p � 2.
We can now apply Chebyshev's inequality:

Pr
�
jZj � E[Zj ]j � an

�
� Var[Zj ]

(an)2
� p�25

a2
: (8.8)

The unbalancedness due to the second kind of error is easily estimated. Let
Wij be the indicator variable for the event �xi is put in part j by step 3 of the
algorithm�. We now apply the following Cherno� bound from [3]:

Pr

"���X
i

Wij � E[Zj ]
��� > b

#
< e�2b2=n + e�pb

2=n :
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Choosing b = n3=4, we obtain

Pr

"���X
i

Wij � E[Zj ]
��� > n3=4

#
< e�2n1=2 + e�pn

1=2

: (8.9)

The decrease in the objective function due to correcting this small distortion turns
out to be negligible.

8.4.2 A balancing scheme and its performance

Suppose that the p parts of the partition have sizes s0; s1; : : : ; sp�1 after step 3 of
Algorithm 7. Consider the following simple balancing scheme:

1. S  ;.

2. For each i such that si > n=p:

(a) Choose T of size si � n=p randomly and uniformly from part i.

(b) S  S [ T .
(c) Remove T from part i.

3. For each i such that si < n=p:

(a) Choose T of size n=p� si randomly and uniformly from S.

(b) S  S n T .
(c) Add T to part i.

How much will the objective value decrease due to balancing? Clearly the worst
case is when none of the vertices being moved in step 3c of the algorithm are
endpoints of any cut edges. Next we bound the cost of the balancing.

Lemma 8.3. The expected decrease due to balancing in the expected performance
guarantee for edges with at least one endpoint in part i in the partition is at most

max
si�n=p

si
� p
p�1

.

Proof. Let �i be the number of cut edges with one endpoint in part i of the partition.
Consider the number of such edges after the set S has been formed by repeated
applications of step 2a. The expected decrease compared to the number prior to
the balancing algorithm being run is at most

�i
maxf0; si � n=pg

si
:

The lemma follows from this and the simple observation that at least a fraction p�1
p

of the edges are cut in the optimal p-section.
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The analysis from the previous section gives us the tools we need to bound the
expected decrease (over the choice of r) in the expected performance guarantee due
to balancing.

Theorem 8.4. Algorithm 7 has expected performance guarantee p�1
p

+
(p�3) for

p � 3 when run with c = 0:2=p1:5.

Proof. If we let a = p�8 in (8.8) and combine this equation with (8.9), we obtain

Pr
�
maxfsi � n=pg � p�8n+ n3=4

�
� 1� p �

�
p�9 + e�2n1=2 + e�pn

1=2�
:

Lemma 8.3 can be applied when maxfsi � n=pg is small; otherwise the decrease in
the expected performance guarantee can be bounded from above by 1. Combining
Lemma 8.2 with this analysis shows that the expected performance guarantee is at
least

p� 1

p
+

1

30p3
� p �

�
p�9 + e�2n1=2 + e�pn

1=2�� np�8 + n3=4

n=p� np�8 � n3=4
� p

p� 1
:

For p � 3 and large enough n, this clearly is p�1
p

+�(p�3).

We defer the analysis of the special case p = 2 (i.e., Max Bisection) to the next
section.

This shows that Algorithm 7 beats the trivial randomized algorithm.

Remark 8.5. This performance guarantee, p�1
p

+�(p�3), is somewhat weaker than

the p�1
p

+�(p�2 log p) achieved by Frieze and Jerrum [36] for the Max p-Cut prob-
lem. It may be possible to sharpen the bound for Max p-Section but it seems hard
to reach p�1

p
+�(p�2) using the approach taken here.

8.5 Modi�cations for Max Bisection

One may wonder if Algorithm 7 improves on the algorithm of Frieze and Jerrum
when p = 2. It turns out that a modi�ed rounding scheme in step 2 improves the
performance of Algorithm 7 when p = 2:

2'. Generate r 2 Rn by choosing each component as N(0; 1) independently. For
each vertex xi and each j = 0; 1; : : : ; p� 1, let qij =

1
p
+ chr; viji. Now �x i.

If all qij are in [0; 1], set pij = qij for all j, otherwise set pij = 0 if qij � 0

and pij = 1 if qij � 1.

As
P

j pij = 1 for all i we could use only the probability that vertex xi is put
in part 0 of the partition; this is equivalent to the above construction.

For p > 2 this might lead to
P

j pij 6= 1 for some i, but for p = 2 it is a
generalization of Frieze and Jerrum's algorithm:
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Theorem 8.6. Frieze and Jerrum's algorithm for Max Bisection has the same
worst-case behavior as the modi�ed version of Algorithm 7 with c =1.

Proof. The semide�nite program (8.1) is, when p = 2, easily seen to be equivalent
to the one used by Frieze and Jerrum. Their rounding scheme corresponds to the
limit c ! 1 in the modi�ed algorithm above; instead of using the inner products
hvij ; ri to determine probabilities, they use hyperplane rounding, in which only the

sign of hvij ; ri matters. This can be interpreted as letting c ! 1. The greedy
balancing scheme they use is equivalent to our probabilistic scheme in the worst
case � instead of choosing T randomly as we did in the rounding scheme above, they
select the T for which the decrease in the number of cut edges is minimal. When
all vertices in a part result in the same decrease, this gives the same performance
as selecting a random subset.

Numerical simulations indicate that c =1 is the best choice in Algorithm 7 so
our approach does not provide a better approximation algorithm for Max Bisection.

Remark 8.7. The material in this chapter �rst appeared in [4]. By the time this
manuscript was submitted for publication, Frieze and Jerrum's algorithm was the
best known for Max Bisection. Recently, Ye [85] found a better approximation
algorithm, also based on semide�nite programming but using a di�erent rounding
scheme. Comparing our ideas to those of Frieze and Jerrum's has therefore become
less interesting, but this section was still kept for the sake of completeness.

8.6 Lower bounds

There are no strong lower bounds on the approximability of the Max p-Section
problem. The main reason for this is probably that the most successful technique
for proving lower bounds, probabilistically checkable proofs (PCPs), focuses on local
properties of problems. For the Max Cut problem, it has been shown that there
cannot exist any approximation algorithm with performance guarantee 16=17 + "

for any " > 0 unless P = NP [52, 81]. PCPs have been less useful on problems
with global constraints than on pure constraint satisfaction problems.
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Chapter 9

Non-boolean sampling

9.1 Introduction

Arora, Karger and Karpinski [12] have constructed a randomized polynomial time
approximation scheme for dense instances of a number of Max-SNP problems,
including Max Cut. They formulate the problems as integer programs with certain
properties, and then construct an algorithm �nding, in probabilistic polynomial
time, a solution accurate enough to give a relative error of ", for any " > 0. Fer-
nandez de la Vega [34] has also, using other techniques, constructed a randomized
polynomial time approximation scheme for dense instances of Max Cut, indepen-
dently of Arora, Karger and Karpinski. It is natural to look for generalizations of
these ideas to other problems. In Chapter 7 we investigated the approximability
of the Max E2-Lin mod p problem, a non-binary constraint satisfaction problem.
What can be said about dense instances of this and other non-binary problems?
The method of Arora, Karger and Karpinski does not seem to apply in this case
since the integer programs used to express such generalizations do not have the
smoothness properties required by the method.

The algorithm of Fernandez de la Vega selects a random subsetW of the vertices
in the graph G = (V;E). This subset has constant size. Then, V nW is partitioned
randomly into smaller sets. These sets are used to construct a cut inG by exhaustive
search. Finally, it turns out that the randomly selected subset W has, with high
probability, the property that the cut found by the exhaustive search is close to the
optimum cut in dense graphs. Goldreich, Goldwasser and Ron [42] generalize these
ideas to several other problems, and express the key idea somewhat di�erently.
In their randomized polynomial time approximation scheme for Max Cut, they
partition the vertices of the graph G = (V;E) into a constant number of disjoint
sets V i. For each i they �nd a cut in V i by selecting a small subset U i of the
vertices in V n V i. Then they try all possible partitions � of U i into two parts.
Each partition � induces a cut in V i. Finally, when � is exactly the partition from
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the maximum cut restricted to the subset in question, the weight of the induced
cut should, with high probability, be close to the weight of the maximum cut. In
this chapter, we continue this line of research by generalizing the above ideas to
arbitrary non-boolean optimization problems.

Frieze and Kannan [37] have constructed a polynomial time approximation
scheme for all dense Max-SNP problems. Their algorithm is a polynomial time
approximation scheme for every problem that can be described as a general function
satis�ability problem with �(nk) functions. Dense instances of Max Ek-Function
Sat mod p do not seem to be expressible in this manner, and on top of that, the
algorithm proposed here has a simpler structure and shorter running time than
their algorithm.

9.2 Systems with two variables per equation

Max E2-Lin mod p is the most natural sub-family of Max Ek-Function Sat mod
p, and for clarity we will �rst describe the polynomial time approximation scheme
and prove the results in this setting.

We consider an unweighted system of linear equations modulo some prime p.
There are n variables x1; : : : ; xn in the system. The equations are of the form

axi + bxi0 = c

where i 6= i0, a; b 2 Z�
p, and c 2 Zp. We assume that there are no equivalent

equations in the system. I.e., if the two equations

axi + bxi0 = c

a0xi + b0xi0 = c0

both are in the system, we assume that there is no d 2 Zp such that a = da0,
b = db0 and c = dc0. We think of variable assignments as functions from the set of
variables to Zp.

De�nition 9.1. Denote by S(X; �; x r) the number of satis�ed equations with
one variable from the set X and x as the other variable, given that the variables
in X are assigned values according to the function � and x is assigned the value r.

In what follows, we will sometimes regard S as a random variable over the choice
of X .

The algorithm we use is based on the Max Cut algorithm by Goldreich, Gold-
wasser and Ron [42], and we use their terminology and notation. The parameters `
and t are constants independent of n. They will be determined during the analysis
of the algorithm.
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Algorithm 8. A randomized polynomial time approximation scheme for dense in-
stances of Max E2-Lin mod p.

1. Partition the variable set V into ` parts V 1; : : : ; V `, each of size n=`.

2. Choose ` sets U1; : : : ; U ` such that U i is a set of cardinality t chosen uniformly
at random from V n V i. Let U =

S`
i=1 U

i.

3. For each of the (at most) p`t assignments � : U 7! Zp, form an assignment
�� : V 7! Zp in the following way:

(a) Let �0 = �.

(b) For i 2 f1; : : : ; `g,
(c) For each v 2 V i,

(d) Let j�(v) be the j 2 Zp that maximizes S(U i; �0; v  j).

(e) De�ne ��(v) = j�(v).

(f) Modify �0 such that �0jV i = �i
�.

4. Let � be the variable assignment �� that maximizes the number of satis�ed
equations.

5. Return �.

The running time of the algorithm depends on how an instance is represented.
A natural choice is to represent an instance as a 0=1-table with one entry for each
possible equation, where 1 corresponds to the equation being present in the instance.
With this model, step 3 takes O(n) time and step 4 takes O(n2) time, hence the
total running time is O(n2).

Our overall goal is to show that it is possible to choose the constants ` and t in
such a way that Algorithm 8 produces, with probability at least 1�Æ, an assignment
with weight at least 1�"=c times the weight of the optimal assignment for instances
with cn2 equations. In the analysis we will use the constants "1 and "2. They are
both linear in ", and will be determined later.

The intuition behind the algorithm is as follows: Since the system of equations
is dense, the sets U i should in some sense represent the structure of V n V i. If we
pick some variable v from V i and some assignment to the variables in V nV i we will,
for each assignment v  j, satisfy some fraction �j of the equations containing v

and one variable from V n V i. We then expect U i to have the property that the
fraction of the satis�ed equations containing v and one variable from U i should be
close to �j . It turns out that the decrease in the number of satis�ed equations due
to the sampling is O(n2), which implies that the algorithm is a polynomial time
approximation scheme only for dense instances of the problem.

Let us now formalize the intuition. From now on, we �x an assignment H to
the variables in V and a partition of V into ` parts V 1; : : : ; V `. The partition of
V is arbitrary, the lexicographical order can be used, while the choice of H will be
discussed later. All de�nitions and results proven below will be relative to these
�xed entities, unless stated otherwise.
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De�nition 9.2. We say that the set U i is good if for all, except a fraction of at
most "1, of the variables v 2 V i the inequality����S(U i; H; v  j)

t
� S(V n V i; H; v  j)

n� jV ij

���� � "2 (9.1)

holds for all j 2 Zp.

What we call a good set is essentially what Fernandez de la Vega [34] calls a
representative set.

Lemma 9.3. For any Æ > 0, it is possible to choose the constant t in such a way
that the probability of a set U i being good is at least 1� Æ=` for a �xed i.

Proof. Fix a variable v 2 V i and some j 2 Zp. Note that the assignmentH is �xed;
the underlying probability space is the possible choices of U i. We now introduce,
for each w 2 V n V i, a Bernoulli random variable �i;j;v;w with the property that

�i;j;v;w =

(
1 if w 2 U i,

0 otherwise.

We can use these random variables to express the number of satis�ed equations
containing v and one variable from U i:

S(U i; H; v  j) =
X

w2V nV i

S(fwg; H; v  j)�i;j;v;w: (9.2)

Since U i is chosen uniformly at random from V n V i,

Pr[�i;j;v;w = 1] =
t

n� jV ij : (9.3)

De�ne the random variables Xi;j;v as follows:

Xi;j;v =
S(U i; H; v  j)

t
:

From (9.2) and (9.3) it follows that

E[Xi;j;v] =
X

w2V nV i

S(fwg; H; v  j)

n� jV ij =
S(V n V i; H; v  j)

n� jV ij ;

which means that we are in good shape if we can bound the probability that Xi;j;v

deviates more than "2 from its mean. At a �rst glance, this seems hard to do. For
Xi;j;v is a linear combination of dependent random variables, and the coe�cients
in the linear combination depend on the assignment H and the instance. Since
there are, for each w 2 V n V i, at most p(p � 1) equations containing v and w,
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S(fwg; H; v  j) can be anywhere between 0 and p � 1. Fortunately, we can use
martingale tail bounds to reach our goal in spite of our limited knowledge of the
probability distribution of Xi;j;v . Since the sets U i have cardinality t, exactly t

di�erent �i;j;v;w are non-zero, which means that the sum in (9.2) can be written as

S(U i; H; v  j) =

tX
k=1

Zk:

Each random variable Zk corresponds to S(fwkg; H; v  j) for some wk 2 V n V i,
and this implies that 0 � Zk � p� 1. Thus, the sequence

X0
i;j;v = E

"Pt
k=1 Zk

t

#

Xm
i;j;v = E

"Pt
k=1 Zk

t
Z1; Z2; : : : ; Zm

#
for m = 1; : : : ; t

is a Doob martingale (see e.g. [71]) with the properties that��Xi;j;v � E[Xi;j;v]
�� = ��Xt

i;j;v �X0
i;j;v

��; (9.4)��Xm
i;j;v �Xm�1

i;j;v

�� � (p� 1)=t for all m 2 f1; : : : ; tg. (9.5)

When (9.5), the so-called Lipschitz condition, is inserted into Azuma's inequality
for martingales [19, 48, 71], we obtain the tail bound

Pr
���Xi;j;v � E[Xi;j;v]

�� > "2
�
< 2e�"

2
2t=2(p�1)2 : (9.6)

The above inequality is valid for �xed i, j and v. A set U i is good if for all but a
fraction "1 of the vertices in V i, the above inequality holds for all j. Thus we keep
i and j �xed and construct a new family of Bernoulli random variables

�i;j;v =

(
1 if

��Xi;j;v � E[Xi;j;v ]
�� > "2,

0 otherwise.

By (9.6),

Pr[�i;j;v = 1] < 2e�"
2
2t=2(p�1)2 :

Furthermore,

Pr[v 2 V i violates (9.1)] �
X
j2Zp

Pr[v 2 V i violates (9.1) for j]

=
X
j2Zp

Pr[�ijv ]

� 2pe�"
2
2t=2(p�1)2 :
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Let B denote the fraction of variables in V i for which (9.1) is violated. Then

E[B] =
1

jV ij
X
v2V i

Pr[v 2 V i violates (9.1)] � 2pe�"
2
2t=2(p�1)2

and applying Markov's inequality yields

Pr[B � "1] �
E[B]

"1
� 2pe�"

2
2t=2(p�1)2

"1
:

This implies that

Pr[U i is good] � 1� 2pe�"
2
2t=2(p�1)2

"1
:

Finally, we are to determine a suitable value for t, in order to make this proba-
bility large enough. If we choose

t � 2(p� 1)2

"22
ln

2`p

Æ"1
;

the probability that U i is good will be at least 1� Æ=`.

Corollary 9.4. For any Æ > 0 it is possible to choose the constant t in such a way
that the probability of all U i being good is at least 1� Æ.

Proof. There are ` di�erent U i.

We construct an assignment � to the variables in V i by step 3 in Algorithm 8.
If U i is good, we expect the number of equations satis�ed by H to be close to
the number of equations satis�ed by �. To formalize this intuition, we need the
following de�nitions.

De�nition 9.5.

�(�) =
the number of equations satis�ed by the assignment �

n2
:

Lemma 9.6. Let � = H jU and � be the assignment produced with this choice of �
in step 3 of Algorithm 8. Denote by H 0 the assignment that assigns to a variable v
the value H(v) if v 2 V n V i and �(v) if v 2 V i. Then, if U i is good, it is for any
" > 0 possible to choose the constant ` in such a way that

�(H 0) � �(H)� "=p`:

Proof. We want to compare the number of equations satis�ed by the assignment H
to the number satis�ed by H 0. In particular, we want to bound the decrease in
the number of satis�ed equations. As only the values assigned to variables in V i

can di�er between the two assignments, the possible sources of aberrations are the
equations where variables in V i are involved. We have three di�erent cases:
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1. Equations of the type av1 + bv2 = c, where v1; v2 2 V i. There are less than
p(p � 1)n2=2`2 such equations, and at most (p � 1)n2=2`2 of these can be
satis�ed by any given assignment. The decrease is thus less than pn2=2`2.

2. Equations of the form av + bw = c where v 2 V i satis�es (9.1), and w 62 V i.
In this case, Algorithm 8 may select the wrong assignment to v. However,
that cannot decrease the number of satis�ed equations by much. For, suppose
that v = j in the optimal solution, but the algorithm happens to set v = j0.
The reason for that can only be that S(U i; �; v  j0) � S(U i; �; v  j). By
(9.1), this implies that����S(V n V i; H; v  j0)

n� jV ij � S(V n V i; H; v  j)

n� jV ij

���� � 2"2:

We can therefore bound the decrease in the number of satis�ed equations by

jV ij
�
S(V n V i; H; v  j0)� S(V n V i; H; v  j)

�
� 2"2n

2=`:

3. Equations of the form av+bw = c where v 2 V i does not satisfy (9.1), and w 62
V i. By construction there are at most "1jV ij such variables in V i. The
number of equations of this type is thus less than "1p

2jV ijn. Only "1pjV ijn
of these can be satis�ed at the same time, and hence a bound on the decrease
is "1pjV ijn = "1pn

2=`.

Summing up, the total decrease is at most

pn2=2`2 + 2"2n
2=`+ "1pn

2=`:

If we select ` = p2=", "1 = "=4p2 and "2 = "=8p the total decrease is at most

"n2=2p`+ "n2=4p`+ "n2=4p` = "n2=p`;

which concludes the proof.

Corollary 9.7. If all U i are good and we construct from an assignment � = H jU a
new assignment � as in step 3 of Algorithm 8, it is for all " > 0 possible to choose
the constant ` in such a way that �(�) � �(H)� "=p.

Proof. Let H0 = H and Hi, i = 1; 2; : : : ; `, satisfy HijV i = �jV i and HijV nV i =

Hi�1jV nV i . Apply Lemma 9.6 a total of ` times, once for each Hi. This corresponds
to the way Algorithm 8 works.

The only observation needed now is that since all results above are valid for any
choice of the assignment H , they are in particular valid when H is the assignment
producing the maximum number of satis�ed equations.

Theorem 9.8. For instances of Max E2-Lin mod p where the number of equations
is �(n2), Algorithm 8 is a randomized polynomial time approximation scheme.
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Proof. Consider the case when the assignment H is the optimal assignment. Since
all possible assignments � to the variables in the set U are tried by the algorithm,
the optimal assignment H restricted to U will eventually be tried. Corollaries 9.4
and 9.7 show that the algorithm produces, with probability at least 1 � Æ, an
assignment � such that �(�) > �(H) � "=p. An additive error of "=p in �(�)

translates into an additive error of "n2=p for the equation problem. Since the
optimum of a Max E2-Lin mod p instance with cn2 equations is at least cn2=p, this
gives a relative error of at most "=c.

9.3 The general case

The algorithm described in the previous section is easily generalized to handle
instances of Max Ek-Function Sat mod p as well � it does not exploit any special
feature of the Max E2-Lin mod p problem. As for Max E2-Lin mod p, we assume
that the set of functions does not contain any redundancy � all functions are
assumed to be di�erent. This is actually a weaker constraint than the one imposed
on Max E2-Lin mod p instances; in the context of Max Ek-Function Sat mod p

problems, axi + bxi0 � c and adxi + dbxi0 � dc (for d 62 f0; 1g) are considered
distinct functions whereas the corresponding Max E2-Lin mod p equations would
be considered identical.

The analysis assumes that all functions in the instance are satis�able. This
is needed to ensure that the optimum of an instance with cnk functions is at
least cnk=pk.

We can adopt the techniques used in the proofs for the Max E2-Lin mod p case
to this more general case with some minor modi�cations.

De�nition 9.9. We extend the notation S(X; �; x  r) to mean the number of
satis�ed functions with k � 1 variables from the set X and one variable x 62 X ,
given that the variables in X are assigned values according to the function � and x
is assigned the value r.

De�nition 9.10. We say that the set U i is good if for all, except a fraction of at
most "1, of the variables v 2 V i the inequality

�����S(U
i; H; v  j)�

t
k�1

� � S(V n V i; H; v  j)�
n�jV ij
k�1

�
����� � "2 (9.7)

holds for all j 2 Zp.

Lemma 9.11. For any Æ > 0, it is possible to choose the constant t in such a way
that the probability of a set U i being good is at least 1� Æ=` for a �xed i.
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Proof. Fix a variable v 2 V i and some j 2 Zp. If we introduce, for each w � V nV i

such that jwj = k � 1, a Bernoulli random variable �i;j;v;w with the property that

�i;j;v;w =

(
1 if w � U i,

0 otherwise,

we can write

S(U i; H; v  j) =
X

w�V nV i

jwj=k�1

S(w;H; v  j)�i;j;v;w: (9.8)

There are pp
k

functions from Z
k
p to Zp and a fraction 1=p of these are satis�ed

simultaneously, which implies that

0 � S(w;H; v  j) � pp
k�1:

To simplify the notation, we put

T =

�
t

k � 1

�
:

As in the proof of Lemma 9.3, we de�ne

Xi;j;v =
S(U i; H; v  j)

T
:

The sum in (9.8) contains T non-zero terms. We can construct a martingale
fXm

i;j;vgTm=0 by conditioning on these terms, as in the proof of Lemma 9.3. The
Lipschitz condition in (9.5) then changes to

jXm
i;j;v �Xm�1

i;j;v j � pp
k�1=T for all m 2 f1; : : : ; Tg:

By choosing

t � k � 2 +

 
2(k � 1)!p2(p

k�1)

"22
ln

2`p

Æ"1

! 1
k�1

:

it can be veri�ed that the probability that U i is good is at least 1� Æ=`.

Lemma 9.12. Let � = H jU and � be the assignment produced with this choice of �
in step 3 of Algorithm 8. Denote by H 0 the assignment that assigns to a variable v
the value H(v) if v 2 V n V i and �(v) if v 2 V i. Then, if U i is good, it is for any
" > 0 possible to choose the constant ` in such a way that

�(H 0) � �(H)� "=pk`:
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Proof. To bound the decrease in the number of satis�ed functions, we perform a
case analysis similar to that in the proof of Lemma 9.6.

1. Functions that depend on more than one variable from V i. At most

pp
k�1nk

`2

such functions can be satis�ed by any given assignment.

2. Functions depending on v 2 V i, where v satis�es (9.7), but not on any other
variable in V i. In this case Algorithm 8 can select the wrong assignment to v.
Suppose that v = j in the optimal solution but that the algorithm sets v = j0.
This implies that S(U i; �; v  j0) � S(U i; �; v  j) and by (9.7),�����S(V n V

i; H; v  j0)�
n�jV ij
k�1

� � S(V n V i; H; v  j)�
n�jV ij
k�1

�
����� � 2"2:

The decrease in the number of satis�ed functions can therefore be bounded
by

jV ij
�
S(V n V i; H; v  j0)� S(V n V i; H; v  j)

�
� 2"2n

k

(k � 1)!`
:

3. Functions depending on v 2 V i but not on any other variable in V i where
v does not satisfy (9.7). By construction there are at most "1jV ij such
variables in V i. The number of functions of this type is thus less than

"1jV ijppknk�1=(k�1)!. Only "1jV ijppk�1nk�1=(k�1)! = "1p
pk�1nk=`(k�1)!

of these can be satis�ed at the same time, which gives us a bound on the
decrease.

Summing up, the total decrease is

pp
k�1nk

`2
+

2"2n
k

(k � 1)!`
+
"1p

pk�1nk

(k � 1)!`
:

By choosing

` = 2pp
k+k�1=";

"1 = "(k � 1)!=4pp
k+k�1;

"2 = "(k � 1)!=8pk;

the total decrease becomes at most "nk=pk`.
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Theorem 9.13. For instances of Max Ek-Function Sat mod p where the number
of satis�able functions is �(nk), Algorithm 8 is a randomized polynomial time ap-
proximation scheme.

Proof. Follows that of Theorem 9.8 with the only di�erence being that the optimum
of a Max Ek-Function Sat mod p instance with cnk satis�able functions is at least
cnk=pk.

9.4 Conclusions

We have shown how to construct a randomized polynomial time approximation
scheme for dense instances of Max Ek-Function Sat mod p. The algorithm is
intuitive, and shows the power of exhaustive sampling. The running time of the
algorithm is quadratic in the number of variables, albeit with large constants. Using
methods similar to those of Goldreich, Goldwasser and Ron [42], we can convert our
algorithm into a randomized constant time approximation scheme. The algorithms
in this scheme only compute numerical approximations to the optimum, they do
not construct assignments achieving this optimum.

As a special case, Theorem 9.13 implies the existence of a polynomial time
approximation scheme for dense instances of Max E3-Lin mod p. This result is
interesting when compared to the lower bounds found by Håstad [52] for systems
of equations with at least 3 variables in each equation: In the general case, there
is no polynomial time approximation algorithm achieving a performance guarantee
of 1=p+ " for any " > 0 unless P =NP. Zwick [87] studied the problem of �nding
almost-satisfying assignments for almost-satis�able instances of some constraint
satisfaction problems. Also for this restricted problem, approximating Max Ek-Lin
mod 2 (in the sense de�ned by Zwick) is hard by the results of Håstad [52].
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Chapter 10

Concluding remarks

10.1 When do non-trivial approximation algorithms

exist?

In this thesis we have investigated the existence of non-trivial approximation algo-
rithms for some NP-hard optimization problems. Our main tool has been semi-
de�nite relaxations, a technique which has been used extensively in a number of
papers the last few years. What are the limits of this technique? Semide�nite
programs are a sub-class of quadratic programs, and it is therefore no coincidence
that the �rst applications came for Max Cut and Max 2-Sat [40]. Both these
problems are constraint satisfaction problems with at most two boolean variables
in each constraint. Constraints with more than two boolean variables have since
been handled using canonical relaxations [86]. We have considered Max E2-Lin
mod p, where each constraint contains at most two variables but the domain is
Zp instead of f0; 1g. The success of semide�nite programming for this problem
can be attributed to the quadratic nature of this problem: Each equation contains
at most two variables. This is in contrast to Max 3-Sat and Max E3-Lin mod p

for p � 3, problems for which there do not exist any non-trivial approximation
algorithms unless P = NP [52]. A common feature of these problems is that each
constraint contains three variables. We tried to extend the results from Chapter 7
to arbitrary functions on Zp � Zp, a class of problems for which we believe that
there exist non-trivial approximation algorithms, but did not succeed.

Semide�nite programming is not limited to constraint satisfaction problems; it
has also been applied to graph problems such as vertex coloring. These problems
are also quadratic in nature as an edge involves two vertices. A graph problem for
which semide�nite programming has not resulted in any substantial improvements
is Min Vertex Cover. Finding an approximation algorithm with performance ratio
a constant less than 2 is an important open problem. There are some indications
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that it may be hard to achieve this using traditional applications of semide�nite
programming [66].

10.2 Veri�ability of results based on numerical

evidence

Some of the results in this thesis are based on numerical computations performed
by computer programs:

� In Chapter 5, a linear program was solved in order to �nd the best way to
combine algorithms.

� In Chapter 6, an approximation algorithm and its performance guarantee
were obtained from the solution to a non-linear optimization problem. Fur-
thermore, the gadgets and proofs of their optimality came from the solution
to linear programs.

� In Chapter 7, the performance guarantee of our algorithm for the case when
all equations are of the form xi � xi0 = c mod 3 was calculated by solving a
non-linear optimization problem.

Thus calculations made by computer programs are used to obtain theoretical re-
sults. This is a somewhat uncomfortable situation which nevertheless has been
encountered numerous times in computer science and mathematics the last few
decades. Several papers on approximation algorithms present results based on nu-
merical evidence, and there are several proofs in mathematics in which computers
play central roles, e.g. Appel and Haken's proof of the four-color theorem [8].

In spite of all the results above being based on calculations which would be too
cumbersome to perform by hand in reasonable time, we feel that the degrees to
which they can be trusted di�er. This is because it for some calculations is possible
to verify the numerical results by hand, while for other calculations this is out of
the question.

The most easily veri�able calculation in the thesis is that in Chapter 5. There
some parameters in an approximation algorithm, and the performance guarantee of
the algorithm, come from the solution of a linear program. Nevertheless, it is easy
to verify by hand that the so obtained algorithm achieves the claimed performance
guarantee. The sharpness of the analysis is harder to verify by hand, but it would
probably be straightforward to show that it cannot be improved by much.

Finding the optimal gadget reductions in Chapter 6 required considerable com-
puting power; the largest linear program took about an hour to solve. In spite of
this, it is an easy matter to verify that the gadgets achieve the claimed costs: This
can be checked by trying a small number of assignments to the boolean variables
involved. Proving the optimality of the gadgets is considerably harder, but still
much easier than �nding the gadgets. The sheer size of the problems would make it
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very time-consuming to do by hand, but with enough dedication it could probably
be done. Something that simpli�es this procedure is that the number of constraints
in the gadgets, corresponding to basic variables in the optimal LP solution, is small
for all reductions.

When analyzing approximation algorithms based on semide�nite programming,
one way to determine the performance guarantee is to numerically estimate the
minimum of a non-linear function over all con�gurations. How hard this is depends
on how many vectors are involved in each con�guration. In the �rst application
of semide�nite programming [40], a con�guration consists of two vectors, which
means that it su�ces to �nd the minimum of a function on [0; �]. Although this
was done numerically, this result is easy to trust and it would be possible to prove
analytically that the performance guarantee is close to that claimed. In later results,
con�gurations have often involved more than two vectors. An example of this is our
results for Max E2 Lin-3 in Chapter 7; these are based on a discretization of the
parameters that are needed to describe a con�guration of two porcupines containing
three vectors each and one random vector. This leads to longer calculations, and
consequently the results are harder to verify. When analyzing the approximation
algorithm for Max 3-Horn Sat in Chapter 6, we need to analyze con�gurations of
four vectors, for a total of six degrees of freedom. This was done by discretizing
the angle space, and the calculation took several days. Notice that for all these
analyses, verifying the performance guarantee is not easier than �nding it in the
�rst place � knowing which con�gurations achieve the minimum does not help in
this respect.

The analysis of the Max 3-Horn Sat algorithm is based on numerical evidence,
which does not constitute a formal mathematical proof. Karlo� and Zwick encoun-
tered a similar problem with their approximation algorithm for Max 3-Sat [59].
They eventually managed to construct a long and tedious analytical proof. For
Max 3-Horn Sat the situation is probably even worse as rotation functions are
involved � the expressions for the separation probabilities become even more com-
plicated. Generating a proof with the help of a computer may be possible, but
such a proof might be of little value as it would probably be very hard for a human
to understand. The �nal goal, an analytical proof that a human can understand,
seems very hard to reach.



124



Bibliography

[1] Paola Alimonti. Non-oblivious local search for graph and hypergraph color-
ing problems. In Proceedings of the 21st International Workshop on Graph-
Theoretic Concepts in Computer Science, volume 1017 of Lecture Notes in
Computer Science, pages 167�180. Springer-Verlag, Berlin, 1995.

[2] Farid Alizadeh. Interior point methods in semide�nite programming with ap-
plications to combinatorial optimization. SIAM Journal of Optimization, 5:13�
51, 1995.

[3] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York,
1992.

[4] Gunnar Andersson. An approximation algorithm for Max p-Section. In Pro-
ceedings of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1563 of Lecture Notes in Computer Science, pages 237�247,
Berlin, 1999. Springer-Verlag, Berlin.

[5] Gunnar Andersson and Lars Engebretsen. Better approximation algorithms for
Set Splitting and Not-All-Equal Sat. Information Processing Letters, 65:305�
311, 1998.

[6] Gunnar Andersson and Lars Engebretsen. Sampling methods applied to dense
instances of non-boolean optimization problems. In 2nd International Work-
shop on Randomization and Approximation Techniques in Computer Science,
volume 1518 of Lecture Notes in Computer Science, pages 357�368, Berlin,
1998. Springer-Verlag, Berlin.

[7] Gunnar Andersson, Lars Engebretsen, and Johan Håstad. A new way to use
semide�nite programming with applications to linear equations mod p. In Pro-
ceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 41�50. ACM-SIAM, 1999.

[8] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable.
Illinois Journal of Mathematics, 21:429�567, 1977.

125



126 Bibliography

[9] Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP and
other geometric problems. In Proceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Science, pages 2�11. IEEE Computer Society, Los
Alamitos, 1996.

[10] Sanjeev Arora. Nearly linear time approximation schemes for Euclidean TSP
and other geometric problems. In Proceedings of the 38th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 554�563. IEEE Computer
Society, Los Alamitos, 1997.

[11] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time ap-
proximation schemes for dense instances of NP-hard problems. In Proceed-
ings of the Twenty-seventh Annual ACM Symposium on Theory of Computing,
pages 284�293. ACM, New York, 1995.

[12] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time ap-
proximation schemes for dense instances of NP-hard problems. Journal of
Computer System Sciences, 58(1):193�210, 1999.

[13] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof veri�cation and hardness of approximation problems. In Pro-
ceedings of the 33rd Annual IEEE Symposium on Foundations of Computer
Science, pages 14�23. IEEE Computer Society, Los Alamitos, 1992.

[14] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof veri�cation and hardness of approximation problems. Journal
of the ACM, 45(3):501�555, 1998.

[15] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; a new char-
acterization of NP. In Proceedings of the 33rd Annual IEEE Symposium on
Foundations of Computer Science, pages 2�13. IEEE Computer Society, Los
Alamitos, 1992.

[16] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP. Journal of the ACM, 45(1):70�122, 1998.

[17] Takao Asano and David P. Williamson. Improved approximation algorithms
for MAX SAT. In Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms. ACM-SIAM, 2000.

[18] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation.
Springer-Verlag, Berlin, 1999.

[19] Kazuoki Azuma. Weighted sums of certain dependent random variables.
Tôhoku Mathematical Journal, 19:357�367, 1967.



Bibliography 127

[20] Reuven Bar-Yehuda and Shimon Even. A linear time approximation algorithm
for the weighted vertex cover problem. Journal of Algorithms, 2:198�203, 1981.

[21] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCP's and
non-approximability � towards tight results. SIAM Journal of Computing,
27(3):804�915, 1998.

[22] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, pages
151�158. ACM, New York, 1971.

[23] Harold S.M. Coxeter. The functions of Schlä�i and Lobaschefsky. Quarterly
Journal of Mathematics (Oxford), 6:13�29, 1935.

[24] Harold S.M. Coxeter. Non-Euclidean geometry. The University of Toronto
Press, 1957.

[25] Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. To Weight or not to
Weight: Where is the Question? In Proceedings of the 4th Israeli Symposium
on Theory of Computing and Systems, pages 68�77, 1996.

[26] Pierluigi Crescenzi and Luca Trevisan. Max NP-completeness made easy. The-
oretical Computer Science, 225:65�79, 1999.

[27] George B. Dantzig. Linear programming and extensions. Princeton University
Press, Princeton, 1963.

[28] George B. Dantzig, D. Ray Fulkerson, and Selmer M. Johnson. Solution of a
large-scale traveling-salesman problem. Operations Research, 2:393�410, 1954.

[29] Jack Edmonds. Paths, trees and Flowers. Canadian Journal of Mathematics,
17:449�467, 1965.

[30] Ronald Fagin. Generalized �rst-order spectra and polynomial-time recogniz-
able sets. In Richard M. Karp, editor, Complexity of Computation, volume 7,
pages 43�73. SIAM AMS Proceedings, 1974.

[31] Uriel Feige and Michel X. Goemans. Approximating the value of two prover
proof systems, with applications to MAX 2SAT and MAX DICUT. In Pro-
ceedings of the 3rd Israeli Symposium on Theory of Computing and Systems,
pages 182�189, 1995.

[32] Uriel Feige, Sha� Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Approximating clique is almost NP-complete (preliminary version). In Pro-
ceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science, pages 2�12. IEEE Computer Society, Los Alamitos, 1991.



128 Bibliography

[33] Uriel Feige, Sha� Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the
ACM, 43:268�292, 1996.

[34] Wenceslas Fernandez de la Vega. MAX-CUT has a randomized approximation
scheme in dense graphs. Random Structures and Algorithms, 9:93�97, 1996.

[35] Alan M. Frieze and Mark Jerrum. Improved approximation algorithms for
MAX k-CUT and MAX BISECTION. In Proceedings of the 4th Conference on
Integer Programming and Combinatorial Optimization, volume 920 of Lecture
Notes in Computer Science, pages 1�13, Berlin, 1995. Springer-Verlag.

[36] Alan M. Frieze and Mark Jerrum. Improved approximation algorithms for
MAX k-CUT and MAX BISECTION. Algorithmica, 18:67�81, 1997.

[37] Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and ap-
plications. Combinatorica, 19:175�220, 1999.

[38] Michael R. Garey and David S. Johnson. Computers and intractability: A
guide to the theory of NP-completeness. Freeman, San Francisco, 1979.

[39] Michel X. Goemans and David P. Williamson. .878-approximation algorithms
for MAX CUT and MAX 2SAT. In Proceedings of the Twenty-sixth Annual
ACM Symposium on Theory of Computing, pages 422�431. ACM, New York,
1994.

[40] Michel X. Goemans and David P. Williamson. Improved approximation al-
gorithms for maximum cut and satis�ability problems using semide�nite pro-
gramming. Journal of the ACM, 42:1115�1145, 1995.

[41] Oded Goldreich, Sha� Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, pages 339�348. IEEE
Computer Society, Los Alamitos, 1996.

[42] Oded Goldreich, Sha� Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. Journal of the ACM, 45(4):653�750,
1998.

[43] Gene H. Golub and Charles F. van Loan. Matrix computations. North Oxford
Academic Publishing, Oxford, 1983.

[44] Venkatesan Guruswami. The approximability of set splitting problems and
satis�ability problems with no mixed clauses. Technical Report TR99-043,
Electronic Colloquium on Computational Complexity, November 1999.



Bibliography 129

[45] Eran Halperin and Uri Zwick. Approximation algorithms for MAX 4-SAT and
rounding procedures for semide�nite programs. In Proceedings of the 7th Con-
ference on Integer Programming and Combinatorial Optimization, volume 1610
of Lecture Notes in Computer Science, pages 202�217, Berlin, 1999. Springer-
Verlag.

[46] Dorit S. Hochbaum. Approximation algorithms for set covering and vertex
cover problems. SIAM Journal of Computing, 11:555�556, 1982.

[47] Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems.
PWS Publishing Company, Boston, 1997.

[48] Wassily Hoe�ding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58:13�30, 1963.

[49] Wu-Yi Hsiang. On in�nitesimal symmetrization and volume formula for spher-
ical or hyperbolic tetrahedrons. Quarterly Journal of Mathematics (Oxford),
39:463�468, 1988.

[50] Johan Håstad. Clique is hard to approximate within n1�". In Proceedings of
the 37th Annual IEEE Symposium on Foundations of Computer Science, pages
627�636. IEEE Computer Society, Los Alamitos, 1996.

[51] Johan Håstad. Testing of the long code and hardness for clique. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pages
11�19. ACM, New York, 1996.

[52] Johan Håstad. Some optimal inapproximability results. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, pages 1�10.
ACM, New York, 1997.

[53] Jörg Jensch, Reinhard Lüling, and Norbert Sensen. A data layout strategy for
parallel web servers. In 4th International Euro-Par Conference, volume 1470
of Lecture Notes in Computer Science, pages 944�952, Berlin, 1998. Springer-
Verlag.

[54] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer System Sciences, 9:256�278, 1974.

[55] Viggo Kann, Jens Lagergren, and Alessandro Panconesi. Approximability of
maximum splitting of k-sets and some other APX-complete problems. Infor-
mation Processing Letters, 58:105�110, 1996.

[56] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph
coloring by semide�nite programming. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, pages 2�13, 1994.



130 Bibliography

[57] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph
coloring by semide�nite programming. Journal of the ACM, 45(2):246�265,
1998.

[58] Howard J. Karlo�. How good is the Goemans-Williamson MAX CUT al-
gorithm? In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, pages 427�434. ACM, New York, 1996.

[59] Howard J. Karlo� and Uri Zwick. A 7/8-approximation algorithm for MAX
3SAT? In Proceedings of the 38th Annual IEEE Symposium on Foundations
of Computer Science, pages 406�415. IEEE Computer Society, Los Alamitos,
1997.

[60] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4:373�395, 1984.

[61] Narendra Karmarkar and Richard M. Karp. An e�cient approximation scheme
for the one-dimensional bin-packing problem. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science, pages 312�320. IEEE
Computer Society, Los Alamitos, 1982.

[62] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computa-
tions, pages 85�103. Plenum Press, New York, NY, 1972.

[63] Ruth Kellerhals. The dilogarithm and volumes of hyperbolic polytopes. In
Leonard Lewin, editor, Structural Properties of Polylogarithms, volume 37 of
Mathematical Surveys and Monographs, pages 301�336. American Mathemat-
ical Society, 1991.

[64] Leonid G. Khaciyan. A polynomial algorithm for linear programming. Doklady
Akademii Nauk SSSR, 244:1093�1096, 1979.

[65] Sanjeev Khanna, Madhu Sudan, and David P. Williamson. A complete classi�-
cation of the approximability of maximization problems derived from Boolean
constraint satisfaction. In Proceedings of the Twenty-ninth Annual ACM Sym-
posium on Theory of Computing, pages 11�20. ACM, New York, 1997.

[66] Jon M. Kleinberg and Michel X. Goemans. The Lovász theta function and a
semide�nite programming relaxation of vertex cover. SIAM Journal of Discrete
Mathematics, 11(2), 1998.

[67] László Lovász. Coverings and colorings of hypergraphs. In Proceedings of the
4th Southeastern Conference on Combinatorics, Graph Theory, and Comput-
ing, pages 3�12. Utilitas Mathematica Publishing, Winnipeg, 1973.



Bibliography 131

[68] Carsten Lund, Lance Fortnow, Howard J. Karlo�, and Noam Nisan. Algebraic
methods for interactive proof systems. In Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science, pages 2�10. IEEE Computer
Society, Los Alamitos, 1990.

[69] Carsten Lund, Lance Fortnow, Howard J. Karlo�, and Noam Nisan. Algebraic
methods for interactive proof systems. Journal of the ACM, 39(4):859�868,
1992.

[70] Sanjeev Mahajan and Hariharan Ramesh. Derandomizing approximation al-
gorithms based on semide�nite programming. SIAM Journal of Computing,
28(5):1641�1663, 1999.

[71] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cam-
bridge University Press, Cambridge, 1995.

[72] Christos H. Papadimitriou. Computational complexity. Addison Wesley, Read-
ing, 1994.

[73] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation, and complexity classes. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages 229�234. ACM, New York, 1988.

[74] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxima-
tion, and complexity classes. Journal of Computer System Sciences, 43:425�
440, 1991.

[75] Erez Petrank. The hardness of approximation: Gap location. Computational
Complexity, 4:133�157, 1994.

[76] Sartaj K. Sahni and Teo�lo F. Gonzalez. P-complete approximation problems.
Journal of the ACM, 23:555�565, 1976.

[77] Thomas J. Schaefer. The complexity of satis�ability problems. In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, pages 216�
226. ACM, New York, 1978.

[78] Ludwig Schlä�i. On the multiple integral
R n

dx dy : : : dz, whose limits are
p1 = a1x+ b1y+ � � �+ h1z > 0; p2 > 0; : : : ; pn > 0, and x2 + y2+ � � �+ z2 < 1.
Quarterly Journal of Mathematics (Oxford), 2:269�300, 1858. Continued in
Vol. 3 (1860), pp. 54�68 and pp. 97�108.

[79] Adi Shamir. IP = PSPACE. In Proceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Science, pages 11�15. IEEE Computer
Society, Los Alamitos, 1990.

[80] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869�877, 1992.



132 Bibliography

[81] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson.
Gadgets, approximation, and linear programming. In Proceedings of the 37th
Annual IEEE Symposium on Foundations of Computer Science, pages 617�
626. IEEE Computer Society, Los Alamitos, 1996.

[82] Lieven Vandenberghe and Stephen P. Boyd. Semide�nite programming. SIAM
Review, 38:49�95, 1996.

[83] Mihalis Yannakakis. On the approximation of maximum satis�ability. In Pro-
ceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1�9. ACM-SIAM, 1992.

[84] Mihalis Yannakakis. On the approximation of maximum satis�ability. Journal
of Algorithms, 17:475�502, 1994.

[85] Yinyu Ye. A .699-approximation algorithm for Max-Bisection. manuscript,
March 1999.

[86] Uri Zwick. Approximation algorithms for constraint satisfaction problems in-
volving at most three variables per constraint. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 201�210. ACM-
SIAM, 1998.

[87] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the Thir-
tieth Annual ACM Symposium on Theory of Computing, pages 551�560. ACM,
New York, 1998.

[88] Uri Zwick. Outward rotations: a tool for rounding solutions of semide�nite
programming relaxations, with applications to MAX CUT and other prob-
lems. In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, pages 679�687. ACM, New York, 1999.


